1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
//! The core API of the `valid` crate

#[cfg(feature = "bigdecimal")]
use bigdecimal::BigDecimal;
#[cfg(feature = "chrono")]
use chrono::{DateTime, NaiveDate, TimeZone, Utc};
#[cfg(feature = "num-bigint")]
use num_bigint::BigInt;
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
use std::borrow::Cow;
use std::convert::TryFrom;
use std::error::Error;
use std::fmt;
use std::fmt::{Debug, Display, Write};
use std::iter::FromIterator;
use std::marker::PhantomData;
use std::ops::Deref;

/// A wrapper type to express that the value of type `T` has been validated by
/// the constraint `C`.
///
/// The idea is that an instance of `Validated<C, T>` can only be obtained by
/// validating a value of type `T` using the constraint `C`. There is no way to
/// construct an instance of `Validated` directly.[^1]
///
/// It follows the new type pattern and can be de-referenced to a immutable
/// reference to its inner value or unwrapped to get the owned inner value.
///
/// In an application we can make use of the type system to assure that only
/// valid values of some type can be input to some function performing some
/// domain related things.
///
/// For example, lets assume we have a function that expects a valid email
/// address as input. We could write the function like:
///
/// ```
/// fn send_email(to: String, message: String) {
///     unimplemented!()
/// }
/// ```
///
/// The problem with this approach is, that we can never be sure that the string
/// input for the `to` argument is a valid email address.
///
/// Lets rewrite the same function using `Validated<Email, String>`.
///
/// ```ignore //TODO remove ignore when Email constraint is implemented
/// use valid::Validated;
///
/// fn send_email(to: Validated<Email, String>, message: String) {
///     unimplemented!()
/// }
/// ```
///
/// Due to we can not instantiate `Validated` directly using some constructor
/// function like `Validated(email)` or `Validated::new(email)` we need to use
/// a validation function like:
///
/// ```ignore //TODO remove ignore when Email constraint is implemented
/// # fn send_email(to: Validated<Email, String>, message: String) {
/// #     unimplemented!()
/// # }
/// use valid::{Validated, Validate};
///
/// let to_addr = "jane.doe@email.net".to_string().validate("email", Email).result()
///         .expect("valid email address");
///
/// send_email(to_addr, "some message".into());
/// ```
///
/// Now we can be sure that the variable `to_addr` contains a valid email
/// address.
///
/// To further make use of meaningful new types we might define a custom new
/// type for email addresses, that can only be constructed from a validated
/// value like so:
///
/// ```ignore //TODO remove ignore when Email constraint is implemented
/// # fn send_email(to: EmailAddress, message: String) {
/// #     unimplemented!()
/// # }
/// use valid::{Validate, Validated};
///
/// mod domain_model {
///     use valid::Validated;
///     pub struct EmailAddress(String);
///
///     impl From<Validated<Email, String>> for EmailAddress {
///         fn from(value: Validated<String>) -> Self {
///             EmailAddress(value.unwrap())
///         }
///     }
/// }
///
/// let validated = "jane.doe@email.net".to_string().validate("email", Email).result(None)
///         .expect("valid email address");
///
/// let to_addr = EmailAddress::from(validated);
///
/// send_email(to_addr, "some message".into());
/// ```
///
/// Due to the type `EmailAddress` is defined in another module it can only be
/// constructed from a `Validated<Email, String>`.
///
/// [^1]: Actually there is a way to construct an instance of `Validated`
///       without actually doing any validation: we can use the
///       `Validation::success` method (see unit tests on how it can be done)
///       We need this method for custom implementations of the `Validate`
///       trait. Unfortunately I have no idea how to prevent this.
///       Fortunately such code can be found by (automated) code review.
pub struct Validated<C, T>(PhantomData<C>, T);

impl<C, T> Validated<C, T> {
    /// Unwraps the original value that has been validated
    pub fn unwrap(self) -> T {
        self.1
    }
}

impl<C, T> Debug for Validated<C, T>
where
    T: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Validated")
            .field(&format_args!("_"))
            .field(&self.1)
            .finish()
    }
}

impl<C, T> PartialEq for Validated<C, T>
where
    T: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.1.eq(&other.1)
    }
}

impl<C, T> Eq for Validated<C, T> where T: Eq {}

impl<C, T> Clone for Validated<C, T>
where
    T: Clone,
{
    fn clone(&self) -> Self {
        Self(PhantomData, self.1.clone())
    }
}

impl<C, T> Copy for Validated<C, T> where T: Copy {}

impl<C, T> Deref for Validated<C, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        &self.1
    }
}

/// The validation function validates whether the given value complies to the
/// specified constraint.
///
/// It returns a `Validation` value that may be used to perform further
/// validations using its combinator methods `and` or `and_then` or get the
/// final result by calling the `result` method.
///
/// The context provides additional information to perform the validation,
/// for example a lookup table or some state information. It may also hold
/// parameters needed to provide additional parameters to the error in case
/// of a constraint violation. (see the crate level documentation for more
/// details on how to use the context)
///
/// see the crate level documentation for details about how to implement a the
/// `Validate` trait for custom constraints and custom types.
pub trait Validate<C, S>
where
    S: Context,
    Self: Sized,
{
    /// Validates this value for being compliant to the specified constraint
    /// `C` in the given context `S`.
    fn validate(self, context: impl Into<S>, constraint: &C) -> Validation<C, Self>;
}

mod private {
    pub trait Sealed {}

    impl<T> Sealed for T where T: super::Context {}
}

/// Trait to mark structs as context for validation functions.
///
/// This trait is sealed and can not be implemented for types outside this
/// crate.
pub trait Context: private::Sealed {}

/// Represents the field level context for validation functions. Its value is
/// the name of the field to be validated.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct FieldName(pub Cow<'static, str>);

impl Context for FieldName {}

impl<A> From<A> for FieldName
where
    A: Into<Cow<'static, str>>,
{
    fn from(value: A) -> Self {
        FieldName(value.into())
    }
}

impl Deref for FieldName {
    type Target = Cow<'static, str>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl FieldName {
    /// Unwraps this field name context and returns the field name itself
    pub fn unwrap(self) -> Cow<'static, str> {
        self.0
    }
}

/// Represents a pair of related fields as context for validation functions.
/// It holds the names of the two related fields that are validated.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct RelatedFields(pub Cow<'static, str>, pub Cow<'static, str>);

impl Context for RelatedFields {}

impl<A, B> From<(A, B)> for RelatedFields
where
    A: Into<Cow<'static, str>>,
    B: Into<Cow<'static, str>>,
{
    fn from((value1, value2): (A, B)) -> Self {
        RelatedFields(value1.into(), value2.into())
    }
}

impl RelatedFields {
    /// Unwraps this related fields context and returns the 2 field names
    pub fn unwrap(self) -> (Cow<'static, str>, Cow<'static, str>) {
        (self.0, self.1)
    }

    /// Returns a reference to the name of the first field
    pub fn first(&self) -> &str {
        &self.0
    }

    /// Returns a reference to the name of the second field
    pub fn second(&self) -> &str {
        &self.1
    }
}

/// Represents the state context for validation functions. Its value is the
/// state information needed to execute the validation.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct State<S>(pub S);

impl<S> Context for State<S> {}

impl<S> From<S> for State<S> {
    fn from(value: S) -> Self {
        State(value)
    }
}

impl<S> Deref for State<S> {
    type Target = S;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<S> State<S> {
    /// Unwraps this state context and returns the state information itself
    pub fn unwrap(self) -> S {
        self.0
    }
}

#[derive(PartialEq)]
enum InnerValidation<C, T> {
    Success(PhantomData<C>, T),
    Failure(Vec<ConstraintViolation>),
}

/// State of an ongoing validation.
///
/// It provides combinator methods like [`and`] and [`and_then`] to combine
/// validation steps to complex validations and accumulates all constraint
/// violations found by the executed validations.
///
/// The result of a validation can be obtained by calling the [`result`] method.
///
/// see the crate level documentation for details and examples on how to use
/// the methods provided by this struct.
///
/// [`and`]: #method.and
/// [`and_then`]: #method.and_then
/// [`result`]: #method.result
#[derive(PartialEq)]
pub struct Validation<C, T>(InnerValidation<C, T>);

impl<C, T> Debug for Validation<C, T>
where
    C: Debug,
    T: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match &self.0 {
            InnerValidation::Success(constraint, value) => {
                write!(f, "Validation(Success({:?}, {:?}))", constraint, value)
            }
            InnerValidation::Failure(violations) => {
                write!(f, "Validation(Failure({:?}))", violations)
            }
        }
    }
}

impl<C, T> Validation<C, T> {
    /// Constructs a `Validation` for a successful validation step.
    ///
    /// This method is provided to enable users of this crate to implement
    /// custom validation functions.
    pub fn success(valid: T) -> Self {
        Validation(InnerValidation::Success(PhantomData, valid))
    }

    /// Constructs a `Validation` for a failed validation step.
    ///
    /// This method is provided to enable users of this crate to implement
    /// custom validation functions.
    pub fn failure(constraint_violations: impl IntoIterator<Item = ConstraintViolation>) -> Self {
        Validation(InnerValidation::Failure(Vec::from_iter(
            constraint_violations.into_iter(),
        )))
    }

    /// Finishes a validation and returns the result of the validation.
    ///
    /// A validation may comprise multiple validation steps that are combined
    /// using the combinator methods of this struct. After all steps are
    /// executed this method can be called to get the [`ValidationResult`]
    ///
    /// [`ValidationResult`]: type.ValidationResult.html
    pub fn result(self) -> ValidationResult<C, T> {
        match self.0 {
            InnerValidation::Success(_c, entity) => Ok(Validated(_c, entity)),
            InnerValidation::Failure(violations) => Err(ValidationError {
                message: None,
                violations,
            }),
        }
    }

    /// Finishes a validation providing a message and returns the result.
    ///
    /// A validation may comprise multiple validation steps that are combined
    /// using the combinator methods of this struct. After all steps are
    /// executed this method can be called to get the [`ValidationResult`]
    ///
    /// In case of an error the [`ValidationError`] will contain the given
    /// message. It is meant to describe the context in which the validation has
    /// been executed. E.g when validating a struct that represents an input
    /// form the message would be something like "validating registration form"
    /// or when validating a struct that represents a REST command the message
    /// would be something like "invalid post entry command".
    ///
    /// [`ValidationResult`]: type.ValidationResult.html
    /// [`ValidationError`]: struct.ValidationError.html
    pub fn with_message(self, message: impl Into<Cow<'static, str>>) -> ValidationResult<C, T> {
        match self.0 {
            InnerValidation::Success(_c, entity) => Ok(Validated(_c, entity)),
            InnerValidation::Failure(violations) => Err(ValidationError {
                message: Some(message.into()),
                violations,
            }),
        }
    }

    /// Combines a value that needs no further validation with the validation
    /// result.
    ///
    /// This method may be especially useful in combination with the
    /// [`and_then`] combinator method. See the crate level documentation for
    /// an example.
    ///
    /// [`and_then`]: #method.and_then
    pub fn combine<U>(self, value: U) -> Validation<C, (U, T)> {
        match self.0 {
            InnerValidation::Success(_, entity) => Validation::success((value, entity)),
            InnerValidation::Failure(violations) => Validation::failure(violations),
        }
    }

    /// Maps the validated values into another type.
    ///
    /// This method is used for complex validations that validate multiple
    /// fields of a struct and the result should be mapped back into this
    /// struct. See the crate level documentation for an example.
    pub fn map<D, U>(self, convert: impl Fn(T) -> U) -> Validation<D, U> {
        match self.0 {
            InnerValidation::Success(_, entity) => Validation::success(convert(entity)),
            InnerValidation::Failure(violations) => Validation::failure(violations),
        }
    }

    /// Combines this validation with another validation unconditionally.
    ///
    /// The other validation is executed regardless whether this validation has
    /// been successful or not.
    ///
    /// The resulting validation is only successful if itself was successful
    /// and the other validation is also successful. Any constraint violations
    /// found either by this validation or the other validation are accumulated.
    ///
    /// See the crate level documentation for an example.
    pub fn and<D, U>(self, other: Validation<D, U>) -> Validation<D, (T, U)> {
        match (self.0, other.0) {
            (InnerValidation::Success(_, value1), InnerValidation::Success(_, value2)) => {
                Validation::success((value1, value2))
            }
            (InnerValidation::Failure(violations), InnerValidation::Success(_, _)) => {
                Validation::failure(violations)
            }
            (InnerValidation::Success(_, _), InnerValidation::Failure(violations)) => {
                Validation::failure(violations)
            }
            (InnerValidation::Failure(mut violations), InnerValidation::Failure(violations2)) => {
                violations.extend(violations2);
                Validation::failure(violations)
            }
        }
    }

    /// Combines this validation with another validation conditionally.
    ///
    /// The other validation is only executed if this validation has been
    /// successful. It has access to the values that have been validated so far.
    ///
    /// Those values are provided in a tuple as an argument to the given
    /// closure. If there is one value that has been validated so far the
    /// argument `T` to the closure is simple the type of the value. In case of
    /// two values `T` is a tuple of type `(A, B)`, in case of 3 values the type
    /// of `T` is a tuple of a tuple and the 3rd value like `((A, B), C)` and
    /// so on.
    ///
    /// Values that are given as argument to the closure but not used for the
    /// other validation are not part of the final result of the validation.
    /// To add unused values to the result of the validation we can use the
    /// [`combine`] method.
    ///
    /// See the crate level documentation for an example.
    ///
    /// [`combine`]: #method.combine
    pub fn and_then<D, U>(self, next: impl FnOnce(T) -> Validation<D, U>) -> Validation<D, U> {
        match self.0 {
            InnerValidation::Success(_, value1) => next(value1),
            InnerValidation::Failure(violations) => Validation::failure(violations),
        }
    }
}

/// A `Value` represents a value of certain type.
///
/// The purpose of a `Value` is to include field values or parameters in
/// [`ConstraintViolation`]s in a type that allows to display the value in a
/// localized format as part of a user facing error message.
///
/// It has variants for the basic types that are used in most applications.
///
/// Important types of 3rd party crates are supported through optional crate
/// features:
///
/// | supported type | crate feature | 3rd party crate |
/// |----------------|---------------|-----------------|
/// | `BigInt`       | `num-bigint`  | [`num-bigint`]  |
/// | `BigDecimal`   | `bigdecimal`  | [`bigdecimal`]  |
/// | `NaiveDate`    | `chrono`      | [`chrono`]      |
/// | `DateTime`     | `chrono`      | [`chrono`]      |
///
/// The `From` trait is implemented for the underlying types. Additionally
/// there are implementations of the `From` trait for the primitive types `i8`,
/// `i16`, `i64`, `u8`, `u16`, `u32`, `u64`.
///
/// `u32` values greater than `i32::max_value()` are converted to `Long(i64)`.
///
/// # Panics
///
/// Converting `u64` values greater than `i64::max_value()` has an unreliable
/// behavior and might panic.
///
/// # Notes
///
/// The list of supported types is very opinionated and may not fit all kind of
/// applications. Please file and issue if you feel that support for another
/// type may be useful!
///
/// [`ConstraintViolation`]: enum.ConstraintViolation.html
/// [`bigdecimal`]: https://crates.io/crates/bigdecimal
/// [`chrono`]: https://crates.io/crates/chrono
/// [`num-bigint`]: https://crates.io/crates/num-bigint
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq)]
pub enum Value {
    /// a string value
    String(String),
    /// a 32bit signed integer value
    Integer(i32),
    /// a 64bit signed integer value
    Long(i64),
    /// a 32bit float value
    Float(f32),
    /// a 64bit float value
    Double(f64),
    /// a boolean value
    Boolean(bool),
    /// a decimal value
    #[cfg(feature = "bigdecimal")]
    Decimal(BigDecimal),
    /// a date value
    #[cfg(feature = "chrono")]
    Date(NaiveDate),
    /// a value with date, time and timezone
    #[cfg(feature = "chrono")]
    DateTime(DateTime<Utc>),
    /// a big integer value
    #[cfg(feature = "num-bigint")]
    BigInteger(BigInt),
}

impl Display for Value {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Value::String(value) => write!(f, "{}", value),
            Value::Integer(value) => write!(f, "{}", value),
            Value::Long(value) => write!(f, "{}", value),
            Value::Float(value) => write!(f, "{}", value),
            Value::Double(value) => write!(f, "{}", value),
            Value::Boolean(value) => write!(f, "{}", value),
            #[cfg(feature = "bigdecimal")]
            Value::Decimal(value) => write!(f, "{}", value),
            #[cfg(feature = "chrono")]
            Value::Date(value) => write!(f, "{}", value),
            #[cfg(feature = "chrono")]
            Value::DateTime(value) => write!(f, "{}", value),
            #[cfg(feature = "num-bigint")]
            Value::BigInteger(value) => write!(f, "{}", value),
        }
    }
}

impl From<String> for Value {
    fn from(value: String) -> Self {
        Value::String(value)
    }
}

impl From<i32> for Value {
    fn from(value: i32) -> Self {
        Value::Integer(value)
    }
}

impl From<i16> for Value {
    fn from(value: i16) -> Self {
        Value::Integer(i32::from(value))
    }
}

impl From<u16> for Value {
    fn from(value: u16) -> Self {
        Value::Integer(i32::from(value))
    }
}

impl From<i8> for Value {
    fn from(value: i8) -> Self {
        Value::Integer(i32::from(value))
    }
}

impl From<u8> for Value {
    fn from(value: u8) -> Self {
        Value::Integer(i32::from(value))
    }
}

impl From<u32> for Value {
    fn from(value: u32) -> Self {
        if value > i32::max_value() as u32 {
            Value::Long(i64::from(value))
        } else {
            Value::Integer(value as i32)
        }
    }
}

impl From<i64> for Value {
    fn from(value: i64) -> Self {
        Value::Long(value)
    }
}

//TODO unreliable conversion - should be removed!
impl From<u64> for Value {
    fn from(value: u64) -> Self {
        assert!(
            value <= i64::max_value() as u64,
            "u64 value too big to be converted to i64"
        );
        Value::Long(value as i64)
    }
}

impl From<f32> for Value {
    fn from(value: f32) -> Self {
        Value::Float(value)
    }
}

impl From<f64> for Value {
    fn from(value: f64) -> Self {
        Value::Double(value)
    }
}

impl From<bool> for Value {
    fn from(value: bool) -> Self {
        Value::Boolean(value)
    }
}

#[cfg(feature = "bigdecimal")]
impl From<BigDecimal> for Value {
    fn from(value: BigDecimal) -> Self {
        Value::Decimal(value)
    }
}

#[cfg(feature = "chrono")]
impl From<NaiveDate> for Value {
    fn from(value: NaiveDate) -> Self {
        Value::Date(value)
    }
}

#[cfg(feature = "chrono")]
impl<Z> From<DateTime<Z>> for Value
where
    Z: TimeZone,
{
    fn from(value: DateTime<Z>) -> Self {
        Value::DateTime(value.with_timezone(&Utc))
    }
}

#[cfg(feature = "num-bigint")]
impl From<BigInt> for Value {
    fn from(value: BigInt) -> Self {
        Value::BigInteger(value)
    }
}

#[cfg(target_pointer_width = "32")]
impl TryFrom<usize> for Value {
    type Error = &'static str;

    fn try_from(value: usize) -> Result<Self, Self::Error> {
        if value <= i32::max_value() as usize {
            Ok(Value::Integer(value as i32))
        } else if value as u64 <= i64::max_value() as u64 {
            Ok(Value::Long(value as i64))
        } else {
            Err("usize value too big to be converted to i64")
        }
    }
}

#[cfg(target_pointer_width = "64")]
impl TryFrom<usize> for Value {
    type Error = &'static str;

    fn try_from(value: usize) -> Result<Self, Self::Error> {
        if value <= i32::max_value() as usize {
            Ok(Value::Integer(value as i32))
        } else if value <= i64::max_value() as usize {
            Ok(Value::Long(value as i64))
        } else {
            Err("usize value too big to be converted to i64")
        }
    }
}

fn option_to_string<T: Display>(optional_value: Option<&T>) -> String {
    match optional_value {
        Some(value) => value.to_string(),
        None => "(n.a.)".to_string(),
    }
}

fn array_to_string<T: Display>(array: &[T]) -> String {
    let separator = " / ";
    let len = array.len();
    let mut iter = array.iter();
    match iter.next() {
        None => "[]".into(),
        Some(first_elem) => {
            let mut result = String::with_capacity(len * separator.len() + 4);
            result.push_str("[ ");
            write!(&mut result, "{}", first_elem).unwrap();
            for elem in iter {
                result.push_str(separator);
                write!(&mut result, "{}", elem).unwrap();
            }
            result.push_str(" ]");
            result
        }
    }
}

/// A key/value pair used as parameter.
///
/// This struct is used to provide more details in [`ConstraintViolation`]s.
///
/// [`ConstraintViolation`]: enum.ConstraintViolation.html
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq)]
pub struct Parameter {
    /// The name of the parameter
    pub name: Cow<'static, str>,

    /// The value of the parameter
    pub value: Value,
}

impl Display for Parameter {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}={}", self.name, self.value)
    }
}

impl Parameter {
    /// Construct a new `Parameter` with given name and value.
    pub fn new(name: impl Into<Cow<'static, str>>, value: impl Into<Value>) -> Self {
        Self {
            name: name.into(),
            value: value.into(),
        }
    }
}

/// Details about a field.
///
/// This struct is used to provide more details in [`ConstraintViolation`]s.
///
/// [`ConstraintViolation`]: enum.ConstraintViolation.html
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq)]
pub struct Field {
    /// The name of the field
    pub name: Cow<'static, str>,

    /// The actual value of the field
    pub actual: Option<Value>,

    /// An example for an expected value
    pub expected: Option<Value>,
}

impl Display for Field {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "field: {}, actual: {}, expected: {}",
            self.name,
            option_to_string(self.actual.as_ref()),
            option_to_string(self.expected.as_ref())
        )
    }
}

/// Holds details about a constraint violation found by validating a constraint
/// in the [`FieldName`] context.
///
/// [`FieldName`]: struct.FieldName.html
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq)]
pub struct InvalidValue {
    /// Error code that identifies the exact error.
    ///
    /// A client that receives the constraint violation should be able to
    /// interpret this error code.
    pub code: Cow<'static, str>,

    /// Details about the field having a value that violates a constraint.
    pub field: Field,
}

impl Display for InvalidValue {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "{} of {} which is {}, expected to be {}",
            self.code,
            self.field.name,
            option_to_string(self.field.actual.as_ref()),
            option_to_string(self.field.expected.as_ref())
        )
    }
}

/// Holds details about a constraint violation found by validating a constraint
/// in the [`RelatedFields`] context.
///
/// [`RelatedFields`]: struct.RelatedFields.html
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq)]
pub struct InvalidRelation {
    /// Error code that identifies the exact error.
    ///
    /// A client that receives the constraint violation should be able to
    /// interpret this error code.
    pub code: Cow<'static, str>,

    /// Details about the first of the pair of related fields
    pub field1: Field,

    /// Details about the second of the pair of related fields
    pub field2: Field,
}

impl Display for InvalidRelation {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "{} of {} which is {} and {} which is {}",
            self.code,
            self.field1.name,
            option_to_string(self.field1.actual.as_ref()),
            self.field2.name,
            option_to_string(self.field2.actual.as_ref())
        )
    }
}

/// Holds details about a constraint violation found by validating a constraint
/// in the [`State`] context.
///
/// [`State`]: struct.State.html
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq)]
pub struct InvalidState {
    /// Error code that identifies the exact error.
    ///
    /// A client that receives the constraint violation should be able to
    /// interpret this error code.
    pub code: Cow<'static, str>,

    /// A list of parameters that may be used to provide more meaningful error
    /// messages to the user of an application
    pub params: Vec<Parameter>,
}

impl Display for InvalidState {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "{} for parameters: {}",
            self.code,
            array_to_string(&self.params)
        )
    }
}

/// Represents a constraint violation found by some validation function.
///
/// The variants provide different details about a constraint violation. As
/// described in the crate level documentation this crate considers 3 categories
/// of business rules or constraints. Violations of constraints of the different
/// categories might provide different details about the validation.
///
/// For example a field validation might provide the field name, the actual value
/// and an example for the expected value. A constraint on the relation of a
/// pair of fields might provide the names of the 2 fields. Stateful constraints
/// may provide a list of parameters that might be useful to describe the
/// reason of the constraint violation.
///
/// An implementation of a constraint should choose the most appropriate
/// context for the kind of business rule it is implementing. Here is a table
/// that shows the relation of the implemented context and the variant of the
/// constraint violation type.
///
/// | Context            | Constraint Violation | Construction Method      |
/// |--------------------|----------------------|--------------------------|
/// | [`FieldName`]      | `Field`              | [`invalid_value`]<br/>[`invalid_optional_value`] |
/// | [`RelatedFields`]  | `Relation`           | [`invalid_relation`]     |
/// | [`State<S>`]       | `State`              | [`invalid_state`]        |
///
/// The construction methods are a convenient way to construct
/// `ConstraintViolation`s.
///
/// `ConstraintViolation` can be serialized and deserialized using the [`serde`]
/// crate. To use the `serde` support the optional crate feature `serde1` must
/// be enabled.
///
/// [`FieldName`]: struct.FieldName.html
/// [`RelatedFields`]: struct.RelatedFields.html
/// [`State<S>`]: struct.State.html
/// [`invalid_value`]: fn.invalid_value.html
/// [`invalid_optional_value`]: fn.invalid_optional_value.html
/// [`invalid_relation`]: fn.invalid_relation.html
/// [`invalid_state`]: fn.invalid_state.html
/// [`serde`]: https://crates.io/crates/serde
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq)]
#[allow(clippy::large_enum_variant)]
pub enum ConstraintViolation {
    /// Violation of a constraint validated in the `FieldName` context
    Field(InvalidValue),
    /// Violation of a constraint validated in the `RelatedField` context
    Relation(InvalidRelation),
    /// Violation of a constraint validated in the `State` context
    State(InvalidState),
}

impl Display for ConstraintViolation {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            ConstraintViolation::Field(value) => write!(f, "{}", value),
            ConstraintViolation::Relation(value) => write!(f, "{}", value),
            ConstraintViolation::State(value) => write!(f, "{}", value),
        }
    }
}

impl From<InvalidValue> for ConstraintViolation {
    fn from(invalid_value: InvalidValue) -> Self {
        ConstraintViolation::Field(invalid_value)
    }
}

impl From<InvalidRelation> for ConstraintViolation {
    fn from(invalid_relation: InvalidRelation) -> Self {
        ConstraintViolation::Relation(invalid_relation)
    }
}

impl From<InvalidState> for ConstraintViolation {
    fn from(invalid_state: InvalidState) -> Self {
        ConstraintViolation::State(invalid_state)
    }
}

/// The error type returned if the validation finds any constraint violation.
///
/// It holds a list of constraint violations and an optional message. The
/// message is meant to describe the context in which the validation has been
/// performed. It is helpful when validating a struct that represents an input
/// form or a REST command. In such cases the message would be something like
/// "validating registration form" or "invalid post entry command".
///
/// The `Display` and `Error` traits are implemented to be compatible with most
/// error management concepts. It can be converted into `failure::Error` using
/// `From` or `Into` conversion traits.
///
/// It can be serialized and deserialized using the [`serde`] crate. To enable
/// `serde` support the optional crate feature `serde1` must be enabled.
///
/// [`serde`]: https://crates.io/crates/serde
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq)]
pub struct ValidationError {
    /// Message that describes the context in which the validation has been
    /// executed
    pub message: Option<Cow<'static, str>>,

    /// A list of constraint violations found during validation
    pub violations: Vec<ConstraintViolation>,
}

impl Display for ValidationError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match &self.message {
            Some(message) => write!(f, "{}: {}", message, array_to_string(&self.violations)),
            None => write!(f, "{}", array_to_string(&self.violations)),
        }
    }
}

impl Error for ValidationError {}

impl ValidationError {
    /// Merges this validation error with another validation error and returns
    /// a new validation error that contains all constraint violations from
    /// both errors merged into one list.
    ///
    /// If both of the validation errors contain a message than the messages
    /// are concatenated separated by the string `' / '`. If only one of the
    /// two errors contain a message than this message becomes the message of
    /// the resulting error.
    ///
    /// # Examples
    ///
    /// ```
    /// use valid::{ValidationError, invalid_value};
    ///
    /// let validation_error1 = ValidationError {
    ///     message: Some("validating a user's age".into()),
    ///     violations: vec![invalid_value("invalid-bound-min", "age", 12, 13)],
    /// };
    /// let validation_error2 = ValidationError {
    ///     message: Some("validating a user registration command".into()),
    ///     violations: vec![invalid_value("invalid-length-min", "username", 3, 4)],
    /// };
    ///
    /// let merged_error = validation_error2.merge(validation_error1);
    ///
    /// assert_eq!(
    ///     merged_error,
    ///     ValidationError {
    ///         message: Some(
    ///             "validating a user registration command / validating a user's age".into()
    ///         ),
    ///         violations: vec![
    ///             invalid_value("invalid-length-min", "username", 3, 4),
    ///             invalid_value("invalid-bound-min", "age", 12, 13),
    ///         ]
    ///     }
    /// );
    /// ```
    pub fn merge(mut self, other: ValidationError) -> Self {
        self.message = match (self.message, other.message) {
            (Some(msg1), Some(msg2)) => Some(msg1 + " / " + msg2),
            (None, Some(msg2)) => Some(msg2),
            (Some(msg1), None) => Some(msg1),
            (None, None) => None,
        };
        self.violations.extend(other.violations);
        self
    }
}

/// Type alias for the validation result for shorter type annotations.
pub type ValidationResult<C, T> = Result<Validated<C, T>, ValidationError>;

/// Convenience function to construct a [`ConstraintViolation`] for a validation
/// performed in the [`FieldName`] context.
///
/// Use this method if the field value is mandatory. If the field is of type
/// `Option<T>` consider using the [`invalid_optional_value`] method instead.
///
/// [`ConstraintViolation`]: enum.ConstraintViolation.html
/// [`FieldName`]: struct.FieldName.html
/// [`invalid_optional_value`]: fn.invalid_optional_value.html
pub fn invalid_value(
    code: impl Into<Cow<'static, str>>,
    field_name: impl Into<FieldName>,
    actual_value: impl Into<Value>,
    expected_value: impl Into<Value>,
) -> ConstraintViolation {
    ConstraintViolation::Field(InvalidValue {
        code: code.into(),
        field: Field {
            name: field_name.into().unwrap(),
            actual: Some(actual_value.into()),
            expected: Some(expected_value.into()),
        },
    })
}

/// Convenience function to construct a [`ConstraintViolation`] for a validation
/// performed in the [`FieldName`] context.
///
/// Use this method if the field value is optional. If the field is not of type
/// `Option<T>` consider using the [`invalid_value`] method instead.
///
/// [`ConstraintViolation`]: enum.ConstraintViolation.html
/// [`FieldName`]: struct.FieldName.html
/// [`invalid_value`]: fn.invalid_value.html
pub fn invalid_optional_value(
    code: impl Into<Cow<'static, str>>,
    field_name: impl Into<FieldName>,
    actual: Option<Value>,
    expected: Option<Value>,
) -> ConstraintViolation {
    ConstraintViolation::Field(InvalidValue {
        code: code.into(),
        field: Field {
            name: field_name.into().unwrap(),
            actual,
            expected,
        },
    })
}

/// Convenience function to construct a [`ConstraintViolation`] for a validation
/// performed in the [`RelatedFields`] context.
///
/// [`ConstraintViolation`]: enum.ConstraintViolation.html
/// [`RelatedFields`]: struct.RelatedFields.html
pub fn invalid_relation(
    code: impl Into<Cow<'static, str>>,
    field_name1: impl Into<Cow<'static, str>>,
    field_value1: impl Into<Value>,
    field_name2: impl Into<Cow<'static, str>>,
    field_value2: impl Into<Value>,
) -> ConstraintViolation {
    ConstraintViolation::Relation(InvalidRelation {
        code: code.into(),
        field1: Field {
            name: field_name1.into(),
            actual: Some(field_value1.into()),
            expected: None,
        },
        field2: Field {
            name: field_name2.into(),
            actual: Some(field_value2.into()),
            expected: None,
        },
    })
}

/// Convenience function to construct a [`ConstraintViolation`] for a validation
/// performed in the [`State`] context.
///
/// [`ConstraintViolation`]: enum.ConstraintViolation.html
/// [`State`]: struct.State.html
pub fn invalid_state(
    code: impl Into<Cow<'static, str>>,
    params: impl IntoIterator<Item = Parameter>,
) -> ConstraintViolation {
    ConstraintViolation::State(InvalidState {
        code: code.into(),
        params: Vec::from_iter(params.into_iter()),
    })
}

/// Convenience function to construct a [`Parameter`].
///
/// [`Parameter`]: struct.Parameter.html
pub fn param(name: impl Into<Cow<'static, str>>, value: impl Into<Value>) -> Parameter {
    Parameter {
        name: name.into(),
        value: value.into(),
    }
}

#[cfg(test)]
mod tests;