1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
// Copyright 2019-2021 the Deno authors. All rights reserved. MIT license.

//! This module's public API exports a number of 'scope' types.
//!
//! These types carry information about the state of the V8 Isolate, as well as
//! lifetimes for certain (return) values. More specialized scopes typically
//! deref to more generic scopes, and ultimately they all deref to `Isolate`.
//!
//! The scope types in the public API are all pointer wrappers, and they all
//! point at a heap-allocated struct `data::ScopeData`. `ScopeData` allocations
//! are never shared between scopes; each Handle/Context/CallbackScope gets
//! its own instance.
//!
//! Notes about the available scope types:
//! See also the tests at the end of this file.
//!
//! - `HandleScope<'s, ()>`
//!   - 's = lifetime of local handles created in this scope, and of the scope
//!     itself.
//!   - This type is returned when a HandleScope is constructed from a direct
//!     reference to an isolate (`&mut Isolate` or `&mut OwnedIsolate`).
//!   - A `Context` is _not_ available. Only certain types JavaScript values can
//!     be created: primitive values, templates, and instances of `Context`.
//!   - Derefs to `Isolate`.
//!
//! - `HandleScope<'s>`
//!   - 's = lifetime of local handles created in this scope, and of the scope
//!     itself.
//!   - A `Context` is available; any type of value can be created.
//!   - Derefs to `HandleScope<'s, ()>`
//!
//! - `ContextScope<'s, P>`
//!   - 's = lifetime of the scope itself.
//!   - A `Context` is available; any type of value can be created.
//!   - Derefs to `P`.
//!   - When constructed as the child of a `HandleScope<'a, ()>`, the returned
//!     type is `ContextScope<'s, HandleScope<'p>>`. In other words, the parent
//!     HandleScope gets an upgrade to indicate the availability of a `Context`.
//!   - When a new scope is constructed inside this type of scope, the
//!     `ContextScope` wrapper around `P` is erased first, which means that the
//!     child scope is set up as if it had been created with `P` as its parent.
//!
//! - `EscapableHandleScope<'s, 'e>`
//!   - 's = lifetime of local handles created in this scope, and of the scope
//!     itself.
//!   - 'e = lifetime of the HandleScope that will receive the local handle that
//!     is created by `EscapableHandleScope::escape()`.
//!   - A `Context` is available; any type of value can be created.
//!   - Derefs to `HandleScope<'s>`.
//!
//! - `TryCatch<'s, P>`
//!   - 's = lifetime of the TryCatch scope.
//!   - `P` is either a `HandleScope` or an `EscapableHandleScope`. This type
//!     also determines for how long the values returned by `TryCatch` methods
//!     `exception()`, `message()`, and `stack_trace()` are valid.
//!   - Derefs to `P`.
//!   - Creating a new scope inside the `TryCatch` block makes its methods
//!     inaccessible until the inner scope is dropped. However, the `TryCatch`
//!     object will nonetheless catch all exception thrown during its lifetime.
//!
//! - `CallbackScope<'s, ()>`
//!   - 's = lifetime of local handles created in this scope, and the value
//!     returned from the callback, and of the scope itself.
//!   - A `Context` is _not_ available. Only certain types JavaScript values can
//!     be created: primitive values, templates, and instances of `Context`.
//!   - Derefs to `HandleScope<'s, ()>`.
//!   - This scope type is only to be constructed inside embedder defined
//!     callbacks when these are called by V8.
//!   - When a scope is created inside, type is erased to `HandleScope<'s, ()>`.
//!
//! - `CallbackScope<'s>`
//!   - 's = lifetime of local handles created in this scope, and the value
//!     returned from the callback, and of the scope itself.
//!   - A `Context` is available; any type of value can be created.
//!   - Derefs to `HandleScope<'s>`.
//!   - This scope type is only to be constructed inside embedder defined
//!     callbacks when these are called by V8.
//!   - When a scope is created inside, type is erased to `HandleScope<'s>`.

use std::alloc::alloc;
use std::alloc::Layout;
use std::any::type_name;
use std::cell::Cell;
use std::convert::TryInto;

use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::num::NonZeroUsize;
use std::ops::Deref;
use std::ops::DerefMut;
use std::ptr;
use std::ptr::NonNull;

use crate::function::FunctionCallbackInfo;
use crate::function::PropertyCallbackInfo;
use crate::Context;
use crate::Data;
use crate::DataError;
use crate::Handle;
use crate::Isolate;
use crate::Local;
use crate::Message;
use crate::Object;
use crate::OwnedIsolate;
use crate::Primitive;
use crate::PromiseRejectMessage;
use crate::Value;

/// Stack-allocated class which sets the execution context for all operations
/// executed within a local scope. After entering a context, all code compiled
/// and run is compiled and run in this context.
#[derive(Debug)]
pub struct ContextScope<'s, P> {
  _data: NonNull<data::ScopeData>,
  _phantom: PhantomData<&'s mut P>,
}

impl<'s, P: param::NewContextScope<'s>> ContextScope<'s, P> {
  #[allow(clippy::new_ret_no_self)]
  pub fn new(param: &'s mut P, context: Local<Context>) -> P::NewScope {
    let scope_data = param.get_scope_data_mut();
    if scope_data.get_isolate_ptr()
      != unsafe { raw::v8__Context__GetIsolate(&*context) }
    {
      panic!(
        "{} and Context do not belong to the same Isolate",
        type_name::<P>()
      )
    }
    let new_scope_data = scope_data.new_context_scope_data(context);
    new_scope_data.as_scope()
  }
}

/// A stack-allocated class that governs a number of local handles.
/// After a handle scope has been created, all local handles will be
/// allocated within that handle scope until either the handle scope is
/// deleted or another handle scope is created.  If there is already a
/// handle scope and a new one is created, all allocations will take
/// place in the new handle scope until it is deleted.  After that,
/// new handles will again be allocated in the original handle scope.
///
/// After the handle scope of a local handle has been deleted the
/// garbage collector will no longer track the object stored in the
/// handle and may deallocate it.  The behavior of accessing a handle
/// for which the handle scope has been deleted is undefined.
#[derive(Debug)]
pub struct HandleScope<'s, C = Context> {
  _data: NonNull<data::ScopeData>,
  _phantom: PhantomData<&'s mut C>,
}

impl<'s> HandleScope<'s> {
  #[allow(clippy::new_ret_no_self)]
  pub fn new<P: param::NewHandleScope<'s>>(param: &'s mut P) -> P::NewScope {
    param
      .get_scope_data_mut()
      .new_handle_scope_data()
      .as_scope()
  }

  /// Opens a new `HandleScope` and enters a `Context` in one step.
  /// The first argument should be an `Isolate` or `OwnedIsolate`.
  /// The second argument can be any handle that refers to a `Context` object;
  /// usually this will be a `Global<Context>`.
  pub fn with_context<
    P: param::NewHandleScopeWithContext<'s>,
    H: Handle<Data = Context>,
  >(
    param: &'s mut P,
    context: H,
  ) -> Self {
    let context_ref = context.open(param.get_isolate_mut());
    param
      .get_scope_data_mut()
      .new_handle_scope_data_with_context(context_ref)
      .as_scope()
  }

  /// Returns the context of the currently running JavaScript, or the context
  /// on the top of the stack if no JavaScript is running.
  pub fn get_current_context(&self) -> Local<'s, Context> {
    let context_ptr = data::ScopeData::get(self).get_current_context();
    unsafe { Local::from_raw(context_ptr) }.unwrap()
  }

  /// Returns either the last context entered through V8's C++ API, or the
  /// context of the currently running microtask while processing microtasks.
  /// If a context is entered while executing a microtask, that context is
  /// returned.
  pub fn get_entered_or_microtask_context(&self) -> Local<'s, Context> {
    let data = data::ScopeData::get(self);
    let isolate_ptr = data.get_isolate_ptr();
    let context_ptr =
      unsafe { raw::v8__Isolate__GetEnteredOrMicrotaskContext(isolate_ptr) };
    unsafe { Local::from_raw(context_ptr) }.unwrap()
  }
}

impl<'s> HandleScope<'s, ()> {
  /// Schedules an exception to be thrown when returning to JavaScript. When
  /// an exception has been scheduled it is illegal to invoke any
  /// JavaScript operation; the caller must return immediately and only
  /// after the exception has been handled does it become legal to invoke
  /// JavaScript operations.
  ///
  /// This function always returns the `undefined` value.
  pub fn throw_exception(
    &mut self,
    exception: Local<Value>,
  ) -> Local<'s, Value> {
    unsafe {
      self.cast_local(|sd| {
        raw::v8__Isolate__ThrowException(sd.get_isolate_ptr(), &*exception)
      })
    }
    .unwrap()
  }

  pub(crate) unsafe fn cast_local<T>(
    &mut self,
    f: impl FnOnce(&mut data::ScopeData) -> *const T,
  ) -> Option<Local<'s, T>> {
    Local::from_raw(f(data::ScopeData::get_mut(self)))
  }

  pub(crate) fn get_isolate_ptr(&self) -> *mut Isolate {
    data::ScopeData::get(self).get_isolate_ptr()
  }
}

impl<'s> HandleScope<'s> {
  /// Return data that was previously attached to the isolate snapshot via
  /// SnapshotCreator, and removes the reference to it. If called again with
  /// same `index` argument, this function returns `DataError::NoData`.
  ///
  /// The value that was stored in the snapshot must either match or be
  /// convertible to type parameter `T`, otherwise `DataError::BadType` is
  /// returned.
  pub fn get_isolate_data_from_snapshot_once<T>(
    &mut self,
    index: usize,
  ) -> Result<Local<'s, T>, DataError>
  where
    T: 'static,
    for<'l> Local<'l, Data>: TryInto<Local<'l, T>, Error = DataError>,
  {
    unsafe {
      self
        .cast_local(|sd| {
          raw::v8__Isolate__GetDataFromSnapshotOnce(sd.get_isolate_ptr(), index)
        })
        .ok_or_else(DataError::no_data::<T>)
        .and_then(|data| data.try_into())
    }
  }

  /// Return data that was previously attached to the context snapshot via
  /// SnapshotCreator, and removes the reference to it. If called again with
  /// same `index` argument, this function returns `DataError::NoData`.
  ///
  /// The value that was stored in the snapshot must either match or be
  /// convertible to type parameter `T`, otherwise `DataError::BadType` is
  /// returned.
  pub fn get_context_data_from_snapshot_once<T>(
    &mut self,
    index: usize,
  ) -> Result<Local<'s, T>, DataError>
  where
    T: 'static,
    for<'l> Local<'l, Data>: TryInto<Local<'l, T>, Error = DataError>,
  {
    unsafe {
      self
        .cast_local(|sd| {
          raw::v8__Context__GetDataFromSnapshotOnce(
            sd.get_current_context(),
            index,
          )
        })
        .ok_or_else(DataError::no_data::<T>)
        .and_then(|data| data.try_into())
    }
  }
}

/// A HandleScope which first allocates a handle in the current scope
/// which will be later filled with the escape value.
// TODO(piscisaureus): type parameter `C` is not very useful in practice; being
// a source of complexity and potential confusion, it is desirable to
// eventually remove it. Blocker at the time of writing is that there are some
// tests that enter an `EscapableHandleScope` without creating a `ContextScope`
// at all. These tests need to updated first.
#[derive(Debug)]
pub struct EscapableHandleScope<'s, 'e: 's, C = Context> {
  _data: NonNull<data::ScopeData>,
  _phantom:
    PhantomData<(&'s mut raw::HandleScope, &'e mut raw::EscapeSlot, &'s C)>,
}

impl<'s, 'e: 's> EscapableHandleScope<'s, 'e> {
  #[allow(clippy::new_ret_no_self)]
  pub fn new<P: param::NewEscapableHandleScope<'s, 'e>>(
    param: &'s mut P,
  ) -> P::NewScope {
    param
      .get_scope_data_mut()
      .new_escapable_handle_scope_data()
      .as_scope()
  }
}

impl<'s, 'e: 's, C> EscapableHandleScope<'s, 'e, C> {
  /// Pushes the value into the previous scope and returns a handle to it.
  /// Cannot be called twice.
  pub fn escape<T>(&mut self, value: Local<T>) -> Local<'e, T>
  where
    for<'l> Local<'l, T>: Into<Local<'l, Data>>,
  {
    let escape_slot = data::ScopeData::get_mut(self)
      .get_escape_slot_mut()
      .expect("internal error: EscapableHandleScope has no escape slot")
      .take()
      .expect("EscapableHandleScope::escape() called twice");
    escape_slot.escape(value)
  }
}

/// An external exception handler.
#[derive(Debug)]
pub struct TryCatch<'s, P> {
  _data: NonNull<data::ScopeData>,
  _phantom: PhantomData<&'s mut P>,
}

impl<'s, P: param::NewTryCatch<'s>> TryCatch<'s, P> {
  #[allow(clippy::new_ret_no_self)]
  pub fn new(param: &'s mut P) -> P::NewScope {
    param.get_scope_data_mut().new_try_catch_data().as_scope()
  }
}

impl<'s, P> TryCatch<'s, P> {
  /// Returns true if an exception has been caught by this try/catch block.
  pub fn has_caught(&self) -> bool {
    unsafe { raw::v8__TryCatch__HasCaught(self.get_raw()) }
  }

  /// For certain types of exceptions, it makes no sense to continue execution.
  ///
  /// If CanContinue returns false, the correct action is to perform any C++
  /// cleanup needed and then return. If CanContinue returns false and
  /// HasTerminated returns true, it is possible to call
  /// CancelTerminateExecution in order to continue calling into the engine.
  pub fn can_continue(&self) -> bool {
    unsafe { raw::v8__TryCatch__CanContinue(self.get_raw()) }
  }

  /// Returns true if an exception has been caught due to script execution
  /// being terminated.
  ///
  /// There is no JavaScript representation of an execution termination
  /// exception. Such exceptions are thrown when the TerminateExecution
  /// methods are called to terminate a long-running script.
  ///
  /// If such an exception has been thrown, HasTerminated will return true,
  /// indicating that it is possible to call CancelTerminateExecution in order
  /// to continue calling into the engine.
  pub fn has_terminated(&self) -> bool {
    unsafe { raw::v8__TryCatch__HasTerminated(self.get_raw()) }
  }

  /// Returns true if verbosity is enabled.
  pub fn is_verbose(&self) -> bool {
    unsafe { raw::v8__TryCatch__IsVerbose(self.get_raw()) }
  }

  /// Set verbosity of the external exception handler.
  ///
  /// By default, exceptions that are caught by an external exception
  /// handler are not reported. Call SetVerbose with true on an
  /// external exception handler to have exceptions caught by the
  /// handler reported as if they were not caught.
  pub fn set_verbose(&mut self, value: bool) {
    unsafe { raw::v8__TryCatch__SetVerbose(self.get_raw_mut(), value) };
  }

  /// Set whether or not this TryCatch should capture a Message object
  /// which holds source information about where the exception
  /// occurred. True by default.
  pub fn set_capture_message(&mut self, value: bool) {
    unsafe { raw::v8__TryCatch__SetCaptureMessage(self.get_raw_mut(), value) };
  }

  /// Clears any exceptions that may have been caught by this try/catch block.
  /// After this method has been called, HasCaught() will return false. Cancels
  /// the scheduled exception if it is caught and ReThrow() is not called
  /// before.
  ///
  /// It is not necessary to clear a try/catch block before using it again; if
  /// another exception is thrown the previously caught exception will just be
  /// overwritten. However, it is often a good idea since it makes it easier
  /// to determine which operation threw a given exception.
  pub fn reset(&mut self) {
    unsafe { raw::v8__TryCatch__Reset(self.get_raw_mut()) };
  }

  fn get_raw(&self) -> &raw::TryCatch {
    data::ScopeData::get(self).get_try_catch()
  }

  fn get_raw_mut(&mut self) -> &mut raw::TryCatch {
    data::ScopeData::get_mut(self).get_try_catch_mut()
  }
}

impl<'s, 'p: 's, P> TryCatch<'s, P>
where
  Self: AsMut<HandleScope<'p, ()>>,
{
  /// Returns the exception caught by this try/catch block. If no exception has
  /// been caught an empty handle is returned.
  ///
  /// Note: v8.h states that "the returned handle is valid until this TryCatch
  /// block has been destroyed". This is incorrect; the return value lives
  /// no longer and no shorter than the active HandleScope at the time this
  /// method is called. An issue has been opened about this in the V8 bug
  /// tracker: https://bugs.chromium.org/p/v8/issues/detail?id=10537.
  pub fn exception(&mut self) -> Option<Local<'p, Value>> {
    unsafe {
      self
        .as_mut()
        .cast_local(|sd| raw::v8__TryCatch__Exception(sd.get_try_catch()))
    }
  }

  /// Returns the message associated with this exception. If there is
  /// no message associated an empty handle is returned.
  ///
  /// Note: the remark about the lifetime for the `exception()` return value
  /// applies here too.
  pub fn message(&mut self) -> Option<Local<'p, Message>> {
    unsafe {
      self
        .as_mut()
        .cast_local(|sd| raw::v8__TryCatch__Message(sd.get_try_catch()))
    }
  }

  /// Throws the exception caught by this TryCatch in a way that avoids
  /// it being caught again by this same TryCatch. As with ThrowException
  /// it is illegal to execute any JavaScript operations after calling
  /// ReThrow; the caller must return immediately to where the exception
  /// is caught.
  ///
  /// This function returns the `undefined` value when successful, or `None` if
  /// no exception was caught and therefore there was nothing to rethrow.
  pub fn rethrow(&mut self) -> Option<Local<'_, Value>> {
    unsafe {
      self
        .as_mut()
        .cast_local(|sd| raw::v8__TryCatch__ReThrow(sd.get_try_catch_mut()))
    }
  }
}

impl<'s, 'p: 's, P> TryCatch<'s, P>
where
  Self: AsMut<HandleScope<'p>>,
{
  /// Returns the .stack property of the thrown object. If no .stack
  /// property is present an empty handle is returned.
  pub fn stack_trace(&mut self) -> Option<Local<'p, Value>> {
    unsafe {
      self.as_mut().cast_local(|sd| {
        raw::v8__TryCatch__StackTrace(
          sd.get_try_catch(),
          sd.get_current_context(),
        )
      })
    }
  }
}

/// A `CallbackScope` can be used to bootstrap a `HandleScope` and
/// `ContextScope` inside a callback function that gets called by V8.
/// Bootstrapping a scope inside a callback is the only valid use case of this
/// type; using it in other places leads to undefined behavior, which is also
/// the reason `CallbackScope::new()` is marked as being an unsafe function.
///
/// For some callback types, rusty_v8 internally creates a scope and passes it
/// as an argument to to embedder callback. Eventually we intend to wrap all
/// callbacks in this fashion, so the embedder would never needs to construct
/// a CallbackScope.
///
/// A `CallbackScope<()>`, without context, can be created from:
///   - `&mut Isolate`
///   - `&mut OwnedIsolate`
///
/// A `CallbackScope`, with context, can be created from:
///   - `Local<Context>`
///   - `Local<Message>`
///   - `Local<Object>`
///   - `Local<Promise>`
///   - `Local<SharedArrayBuffer>`
///   - `&FunctionCallbackInfo`
///   - `&PropertyCallbackInfo`
///   - `&PromiseRejectMessage`
#[derive(Debug)]
pub struct CallbackScope<'s, C = Context> {
  _data: NonNull<data::ScopeData>,
  _phantom: PhantomData<&'s mut HandleScope<'s, C>>,
}

impl<'s> CallbackScope<'s> {
  #[allow(clippy::new_ret_no_self)]
  pub unsafe fn new<P: param::NewCallbackScope<'s>>(param: P) -> P::NewScope {
    let (isolate, context) = param.get_isolate_mut_and_maybe_current_context();
    data::ScopeData::get_current_mut(isolate)
      .new_callback_scope_data(context)
      .as_scope()
  }
}

macro_rules! impl_as {
  // Implements `AsRef<Isolate>` and AsMut<Isolate>` on a scope type.
  (<$($params:tt),+> $src_type:ty as Isolate) => {
    impl<$($params),*> AsRef<Isolate> for $src_type {
      fn as_ref(&self) -> &Isolate {
        data::ScopeData::get(self).get_isolate()
      }
    }

    impl<$($params),*> AsMut<Isolate> for $src_type {
      fn as_mut(&mut self) -> &mut Isolate {
        data::ScopeData::get_mut(self).get_isolate_mut()
      }
    }
  };

  // Implements `AsRef` and `AsMut` traits for the purpose of converting a
  // a scope reference to a scope reference with a different but compatible type.
  (<$($params:tt),+> $src_type:ty as $tgt_type:ty) => {
    impl<$($params),*> AsRef<$tgt_type> for $src_type {
      fn as_ref(&self) -> &$tgt_type {
        self.cast_ref()
      }
    }

    impl<$($params),*> AsMut< $tgt_type> for $src_type {
      fn as_mut(&mut self) -> &mut $tgt_type {
        self.cast_mut()
      }
    }
  };
}

impl_as!(<'s, 'p, P> ContextScope<'s, P> as Isolate);
impl_as!(<'s, C> HandleScope<'s, C> as Isolate);
impl_as!(<'s, 'e, C> EscapableHandleScope<'s, 'e, C> as Isolate);
impl_as!(<'s, P> TryCatch<'s, P> as Isolate);
impl_as!(<'s, C> CallbackScope<'s, C> as Isolate);

impl_as!(<'s, 'p> ContextScope<'s, HandleScope<'p>> as HandleScope<'p, ()>);
impl_as!(<'s, 'p, 'e> ContextScope<'s, EscapableHandleScope<'p, 'e>> as HandleScope<'p, ()>);
impl_as!(<'s, C> HandleScope<'s, C> as HandleScope<'s, ()>);
impl_as!(<'s, 'e, C> EscapableHandleScope<'s, 'e, C> as HandleScope<'s, ()>);
impl_as!(<'s, 'p, C> TryCatch<'s, HandleScope<'p, C>> as HandleScope<'p, ()>);
impl_as!(<'s, 'p, 'e, C> TryCatch<'s, EscapableHandleScope<'p, 'e, C>> as HandleScope<'p, ()>);
impl_as!(<'s, C> CallbackScope<'s, C> as HandleScope<'s, ()>);

impl_as!(<'s, 'p> ContextScope<'s, HandleScope<'p>> as HandleScope<'p>);
impl_as!(<'s, 'p, 'e> ContextScope<'s, EscapableHandleScope<'p, 'e>> as HandleScope<'p>);
impl_as!(<'s> HandleScope<'s> as HandleScope<'s>);
impl_as!(<'s, 'e> EscapableHandleScope<'s, 'e> as HandleScope<'s>);
impl_as!(<'s, 'p> TryCatch<'s, HandleScope<'p>> as HandleScope<'p>);
impl_as!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e>> as HandleScope<'p>);
impl_as!(<'s> CallbackScope<'s> as HandleScope<'s>);

impl_as!(<'s, 'p, 'e> ContextScope<'s, EscapableHandleScope<'p, 'e>> as EscapableHandleScope<'p, 'e, ()>);
impl_as!(<'s, 'e, C> EscapableHandleScope<'s, 'e, C> as EscapableHandleScope<'s, 'e, ()>);
impl_as!(<'s, 'p, 'e, C> TryCatch<'s, EscapableHandleScope<'p, 'e, C>> as EscapableHandleScope<'p, 'e, ()>);

impl_as!(<'s, 'p, 'e> ContextScope<'s, EscapableHandleScope<'p, 'e>> as EscapableHandleScope<'p, 'e>);
impl_as!(<'s, 'e> EscapableHandleScope<'s, 'e> as EscapableHandleScope<'s, 'e>);
impl_as!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e>> as EscapableHandleScope<'p, 'e>);

impl_as!(<'s, 'p, C> TryCatch<'s, HandleScope<'p, C>> as TryCatch<'s, HandleScope<'p, ()>>);
impl_as!(<'s, 'p, 'e, C> TryCatch<'s, EscapableHandleScope<'p, 'e, C>> as TryCatch<'s, HandleScope<'p, ()>>);
impl_as!(<'s, 'p, 'e, C> TryCatch<'s, EscapableHandleScope<'p, 'e, C>> as TryCatch<'s, EscapableHandleScope<'p, 'e, ()>>);

impl_as!(<'s, 'p> TryCatch<'s, HandleScope<'p>> as TryCatch<'s, HandleScope<'p>>);
impl_as!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e>> as TryCatch<'s, HandleScope<'p>>);
impl_as!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e>> as TryCatch<'s, EscapableHandleScope<'p, 'e>>);

macro_rules! impl_deref {
  (<$($params:tt),+> $src_type:ty as $tgt_type:ty) => {
    impl<$($params),*> Deref for $src_type {
      type Target = $tgt_type;
      fn deref(&self) -> &Self::Target {
        self.as_ref()
      }
    }

    impl<$($params),*> DerefMut for $src_type {
      fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut()
      }
    }
  };
}

impl_deref!(<'s, 'p> ContextScope<'s, HandleScope<'p>> as HandleScope<'p>);
impl_deref!(<'s, 'p, 'e> ContextScope<'s, EscapableHandleScope<'p, 'e>> as EscapableHandleScope<'p, 'e>);

impl_deref!(<'s> HandleScope<'s, ()> as Isolate);
impl_deref!(<'s> HandleScope<'s> as HandleScope<'s, ()>);

impl_deref!(<'s, 'e> EscapableHandleScope<'s, 'e, ()> as HandleScope<'s, ()>);
impl_deref!(<'s, 'e> EscapableHandleScope<'s, 'e> as HandleScope<'s>);

impl_deref!(<'s, 'p> TryCatch<'s, HandleScope<'p, ()>> as HandleScope<'p, ()>);
impl_deref!(<'s, 'p> TryCatch<'s, HandleScope<'p>> as HandleScope<'p>);
impl_deref!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e, ()>> as EscapableHandleScope<'p, 'e, ()>);
impl_deref!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e>> as EscapableHandleScope<'p, 'e>);

impl_deref!(<'s> CallbackScope<'s, ()> as HandleScope<'s, ()>);
impl_deref!(<'s> CallbackScope<'s> as HandleScope<'s>);

macro_rules! impl_scope_drop {
  (<$($params:tt),+> $type:ty) => {
    unsafe impl<$($params),*> Scope for $type {}

    impl<$($params),*> Drop for $type {
      fn drop(&mut self) {
        data::ScopeData::get_mut(self).notify_scope_dropped();
      }
    }
  };
}

impl_scope_drop!(<'s, 'p, P> ContextScope<'s, P>);
impl_scope_drop!(<'s, C> HandleScope<'s, C> );
impl_scope_drop!(<'s, 'e, C> EscapableHandleScope<'s, 'e, C> );
impl_scope_drop!(<'s, P> TryCatch<'s, P> );
impl_scope_drop!(<'s, C> CallbackScope<'s, C> );

pub unsafe trait Scope: Sized {}

trait ScopeCast: Sized {
  fn cast_ref<S: Scope>(&self) -> &S;
  fn cast_mut<S: Scope>(&mut self) -> &mut S;
}

impl<T: Scope> ScopeCast for T {
  fn cast_ref<S: Scope>(&self) -> &S {
    assert_eq!(Layout::new::<Self>(), Layout::new::<S>());
    unsafe { &*(self as *const _ as *const S) }
  }

  fn cast_mut<S: Scope>(&mut self) -> &mut S {
    assert_eq!(Layout::new::<Self>(), Layout::new::<S>());
    unsafe { &mut *(self as *mut _ as *mut S) }
  }
}

/// Scopes are typically constructed as the child of another scope. The scope
/// that is returned from `«Child»Scope::new(parent: &mut «Parent»Scope)` does
/// not necessarily have type `«Child»Scope`, but rather its type is a merger of
/// both the the parent and child scope types.
///
/// For example: a `ContextScope` created inside `HandleScope<'a, ()>` does not
/// produce a `ContextScope`, but rather a `HandleScope<'a, Context>`, which
/// describes a scope that is both a `HandleScope` _and_ a `ContextScope`.
///
/// The Traits in the (private) `param` module define which types can be passed
/// as a parameter to the `«Some»Scope::new()` constructor, and what the
/// actual, merged scope type will be that `new()` returns for a specific
/// parameter type.
mod param {
  use super::*;

  pub trait NewContextScope<'s>: getter::GetScopeData {
    type NewScope: Scope;
  }

  impl<'s, 'p: 's, P: Scope> NewContextScope<'s> for ContextScope<'p, P> {
    type NewScope = ContextScope<'s, P>;
  }

  impl<'s, 'p: 's, C> NewContextScope<'s> for HandleScope<'p, C> {
    type NewScope = ContextScope<'s, HandleScope<'p>>;
  }

  impl<'s, 'p: 's, 'e: 'p, C> NewContextScope<'s>
    for EscapableHandleScope<'p, 'e, C>
  {
    type NewScope = ContextScope<'s, EscapableHandleScope<'p, 'e>>;
  }

  impl<'s, 'p: 's, P: NewContextScope<'s>> NewContextScope<'s>
    for TryCatch<'p, P>
  {
    type NewScope = <P as NewContextScope<'s>>::NewScope;
  }

  impl<'s, 'p: 's, C> NewContextScope<'s> for CallbackScope<'p, C> {
    type NewScope = ContextScope<'s, HandleScope<'p>>;
  }

  pub trait NewHandleScope<'s>: getter::GetScopeData {
    type NewScope: Scope;
  }

  impl<'s> NewHandleScope<'s> for Isolate {
    type NewScope = HandleScope<'s, ()>;
  }

  impl<'s> NewHandleScope<'s> for OwnedIsolate {
    type NewScope = HandleScope<'s, ()>;
  }

  impl<'s, 'p: 's, P: NewHandleScope<'s>> NewHandleScope<'s>
    for ContextScope<'p, P>
  {
    type NewScope = <P as NewHandleScope<'s>>::NewScope;
  }

  impl<'s, 'p: 's, C> NewHandleScope<'s> for HandleScope<'p, C> {
    type NewScope = HandleScope<'s, C>;
  }

  impl<'s, 'p: 's, 'e: 'p, C> NewHandleScope<'s>
    for EscapableHandleScope<'p, 'e, C>
  {
    type NewScope = EscapableHandleScope<'s, 'e, C>;
  }

  impl<'s, 'p: 's, P: NewHandleScope<'s>> NewHandleScope<'s> for TryCatch<'p, P> {
    type NewScope = <P as NewHandleScope<'s>>::NewScope;
  }

  impl<'s, 'p: 's, C> NewHandleScope<'s> for CallbackScope<'p, C> {
    type NewScope = HandleScope<'s, C>;
  }

  pub trait NewHandleScopeWithContext<'s>: getter::GetScopeData {
    fn get_isolate_mut(&mut self) -> &mut Isolate;
  }

  impl<'s> NewHandleScopeWithContext<'s> for Isolate {
    fn get_isolate_mut(&mut self) -> &mut Isolate {
      self
    }
  }

  impl<'s> NewHandleScopeWithContext<'s> for OwnedIsolate {
    fn get_isolate_mut(&mut self) -> &mut Isolate {
      &mut *self
    }
  }

  pub trait NewEscapableHandleScope<'s, 'e: 's>: getter::GetScopeData {
    type NewScope: Scope;
  }

  impl<'s, 'p: 's, 'e: 'p, P: NewEscapableHandleScope<'s, 'e>>
    NewEscapableHandleScope<'s, 'e> for ContextScope<'p, P>
  {
    type NewScope = <P as NewEscapableHandleScope<'s, 'e>>::NewScope;
  }

  impl<'s, 'p: 's, C> NewEscapableHandleScope<'s, 'p> for HandleScope<'p, C> {
    type NewScope = EscapableHandleScope<'s, 'p, C>;
  }

  impl<'s, 'p: 's, 'e: 'p, C> NewEscapableHandleScope<'s, 'p>
    for EscapableHandleScope<'p, 'e, C>
  {
    type NewScope = EscapableHandleScope<'s, 'p, C>;
  }

  impl<'s, 'p: 's, 'e: 'p, P: NewEscapableHandleScope<'s, 'e>>
    NewEscapableHandleScope<'s, 'e> for TryCatch<'p, P>
  {
    type NewScope = <P as NewEscapableHandleScope<'s, 'e>>::NewScope;
  }

  impl<'s, 'p: 's, C> NewEscapableHandleScope<'s, 'p> for CallbackScope<'p, C> {
    type NewScope = EscapableHandleScope<'s, 'p, C>;
  }

  pub trait NewTryCatch<'s>: getter::GetScopeData {
    type NewScope: Scope;
  }

  impl<'s, 'p: 's, P: NewTryCatch<'s>> NewTryCatch<'s> for ContextScope<'p, P> {
    type NewScope = <P as NewTryCatch<'s>>::NewScope;
  }

  impl<'s, 'p: 's, C> NewTryCatch<'s> for HandleScope<'p, C> {
    type NewScope = TryCatch<'s, HandleScope<'p, C>>;
  }

  impl<'s, 'p: 's, 'e: 'p, C> NewTryCatch<'s>
    for EscapableHandleScope<'p, 'e, C>
  {
    type NewScope = TryCatch<'s, EscapableHandleScope<'p, 'e, C>>;
  }

  impl<'s, 'p: 's, P> NewTryCatch<'s> for TryCatch<'p, P> {
    type NewScope = TryCatch<'s, P>;
  }

  impl<'s, 'p: 's, C> NewTryCatch<'s> for CallbackScope<'p, C> {
    type NewScope = TryCatch<'s, HandleScope<'p, C>>;
  }

  pub trait NewCallbackScope<'s>: Sized + getter::GetIsolate<'s> {
    type NewScope: Scope;

    unsafe fn get_isolate_mut_and_maybe_current_context(
      self,
    ) -> (&'s mut Isolate, Option<Local<'s, Context>>) {
      (self.get_isolate_mut(), None)
    }
  }

  impl<'s> NewCallbackScope<'s> for &'s mut Isolate {
    type NewScope = CallbackScope<'s, ()>;
  }

  impl<'s> NewCallbackScope<'s> for &'s mut OwnedIsolate {
    type NewScope = CallbackScope<'s, ()>;
  }

  impl<'s> NewCallbackScope<'s> for &'s FunctionCallbackInfo {
    type NewScope = CallbackScope<'s>;
  }

  impl<'s> NewCallbackScope<'s> for &'s PropertyCallbackInfo {
    type NewScope = CallbackScope<'s>;
  }

  impl<'s> NewCallbackScope<'s> for Local<'s, Context> {
    type NewScope = CallbackScope<'s>;

    unsafe fn get_isolate_mut_and_maybe_current_context(
      self,
    ) -> (&'s mut Isolate, Option<Local<'s, Context>>) {
      (getter::GetIsolate::get_isolate_mut(self), Some(self))
    }
  }

  impl<'s> NewCallbackScope<'s> for Local<'s, Message> {
    type NewScope = CallbackScope<'s>;
  }

  impl<'s, T: Into<Local<'s, Object>>> NewCallbackScope<'s> for T {
    type NewScope = CallbackScope<'s>;
  }

  impl<'s> NewCallbackScope<'s> for &'s PromiseRejectMessage<'s> {
    type NewScope = CallbackScope<'s>;
  }
}

/// The private `getter` module defines traits to look up the related `Isolate`
/// and `ScopeData` for many different types. The implementation of those traits
/// on the types that implement them are also all contained in this module.
mod getter {
  pub use super::*;

  pub trait GetIsolate<'s> {
    unsafe fn get_isolate_mut(self) -> &'s mut Isolate;
  }

  impl<'s> GetIsolate<'s> for &'s mut Isolate {
    unsafe fn get_isolate_mut(self) -> &'s mut Isolate {
      self
    }
  }

  impl<'s> GetIsolate<'s> for &'s mut OwnedIsolate {
    unsafe fn get_isolate_mut(self) -> &'s mut Isolate {
      &mut *self
    }
  }

  impl<'s> GetIsolate<'s> for &'s FunctionCallbackInfo {
    unsafe fn get_isolate_mut(self) -> &'s mut Isolate {
      &mut *raw::v8__FunctionCallbackInfo__GetIsolate(self)
    }
  }

  impl<'s> GetIsolate<'s> for &'s PropertyCallbackInfo {
    unsafe fn get_isolate_mut(self) -> &'s mut Isolate {
      &mut *raw::v8__PropertyCallbackInfo__GetIsolate(self)
    }
  }

  impl<'s> GetIsolate<'s> for Local<'s, Context> {
    unsafe fn get_isolate_mut(self) -> &'s mut Isolate {
      &mut *raw::v8__Context__GetIsolate(&*self)
    }
  }

  impl<'s> GetIsolate<'s> for Local<'s, Message> {
    unsafe fn get_isolate_mut(self) -> &'s mut Isolate {
      &mut *raw::v8__Message__GetIsolate(&*self)
    }
  }

  impl<'s, T: Into<Local<'s, Object>>> GetIsolate<'s> for T {
    unsafe fn get_isolate_mut(self) -> &'s mut Isolate {
      let object: Local<Object> = self.into();
      &mut *raw::v8__Object__GetIsolate(&*object)
    }
  }

  impl<'s> GetIsolate<'s> for &'s PromiseRejectMessage<'s> {
    unsafe fn get_isolate_mut(self) -> &'s mut Isolate {
      let object: Local<Object> = self.get_promise().into();
      &mut *raw::v8__Object__GetIsolate(&*object)
    }
  }

  pub trait GetScopeData {
    fn get_scope_data_mut(&mut self) -> &mut data::ScopeData;
  }

  impl<T: Scope> GetScopeData for T {
    fn get_scope_data_mut(&mut self) -> &mut data::ScopeData {
      data::ScopeData::get_mut(self)
    }
  }

  impl GetScopeData for Isolate {
    fn get_scope_data_mut(&mut self) -> &mut data::ScopeData {
      data::ScopeData::get_root_mut(self)
    }
  }

  impl GetScopeData for OwnedIsolate {
    fn get_scope_data_mut(&mut self) -> &mut data::ScopeData {
      data::ScopeData::get_root_mut(self)
    }
  }
}

/// All publicly exported `«Some»Scope` types are essentially wrapping a pointer
/// to a heap-allocated struct `ScopeData`. This module contains the definition
/// for `ScopeData` and its inner types, as well as related helper traits.
pub(crate) mod data {
  use super::*;

  #[derive(Debug)]
  pub struct ScopeData {
    // The first four fields are always valid - even when the `Box<ScopeData>`
    // struct is free (does not contain data related to an actual scope).
    // The `previous` and `isolate` fields never change; the `next` field is
    // set to `None` initially when the struct is created, but it may later be
    // assigned a `Some(Box<ScopeData>)` value, after which this field never
    // changes again.
    isolate: NonNull<Isolate>,
    previous: Option<NonNull<ScopeData>>,
    next: Option<Box<ScopeData>>,
    // The 'status' field is also always valid (but does change).
    status: Cell<ScopeStatus>,
    // The following fields are only valid when this ScopeData object is in use
    // (eiter current or shadowed -- not free).
    context: Cell<Option<NonNull<Context>>>,
    escape_slot: Option<NonNull<Option<raw::EscapeSlot>>>,
    try_catch: Option<NonNull<raw::TryCatch>>,
    scope_type_specific_data: ScopeTypeSpecificData,
  }

  impl ScopeData {
    /// Returns a mutable reference to the data associated with topmost scope
    /// on the scope stack. This function does not automatically exit zombie
    /// scopes, so it might return a zombie ScopeData reference.
    pub(crate) fn get_current_mut(isolate: &mut Isolate) -> &mut Self {
      let self_mut = isolate
        .get_current_scope_data()
        .map(NonNull::as_ptr)
        .map(|p| unsafe { &mut *p })
        .unwrap();
      match self_mut.status.get() {
        ScopeStatus::Current { .. } => self_mut,
        _ => unreachable!(),
      }
    }

    /// Initializes the scope stack by creating a 'dummy' `ScopeData` at the
    /// very bottom. This makes it possible to store the freelist of reusable
    /// ScopeData objects even when no scope is entered.
    pub(crate) fn new_root(isolate: &mut Isolate) {
      let root = Box::leak(Self::boxed(isolate.into()));
      root.status = ScopeStatus::Current { zombie: false }.into();
      debug_assert!(isolate.get_current_scope_data().is_none());
      isolate.set_current_scope_data(Some(root.into()));
    }

    /// Activates and returns the 'root' `ScopeData` object that is created when
    /// the isolate is initialized. In order to do so, any zombie scopes that
    /// remain on the scope stack are cleaned up.
    ///
    /// # Panics
    ///
    /// This function panics if the root can't be activated because there are
    /// still other scopes on the stack and they're not zombies.
    pub(crate) fn get_root_mut(isolate: &mut Isolate) -> &mut Self {
      let mut current_scope_data = Self::get_current_mut(isolate);
      loop {
        current_scope_data = match current_scope_data {
          root if root.previous.is_none() => break root,
          data => data.try_exit_scope(),
        };
      }
    }

    /// Drops the scope stack and releases all `Box<ScopeData>` allocations.
    /// This function should be called only when an Isolate is being disposed.
    pub(crate) fn drop_root(isolate: &mut Isolate) {
      let root = Self::get_root_mut(isolate);
      unsafe { Box::from_raw(root) };
      isolate.set_current_scope_data(None);
    }

    pub(super) fn new_context_scope_data<'s>(
      &'s mut self,
      context: Local<'s, Context>,
    ) -> &'s mut Self {
      self.new_scope_data_with(move |data| {
        data.scope_type_specific_data.init_with(|| {
          ScopeTypeSpecificData::ContextScope {
            _raw_context_scope: raw::ContextScope::new(context),
          }
        });
        data.context.set(Some(context.as_non_null()));
      })
    }

    /// Implementation helper function, which creates the raw `HandleScope`, but
    /// defers (maybe) entering a context to the provided callback argument.
    /// This function gets called by `Self::new_handle_scope_data()` and
    /// `Self::new_handle_scope_data_with_context()`.
    #[inline(always)]
    fn new_handle_scope_data_with<F>(&mut self, init_context_fn: F) -> &mut Self
    where
      F: FnOnce(
        NonNull<Isolate>,
        &mut Cell<Option<NonNull<Context>>>,
        &mut Option<raw::ContextScope>,
      ),
    {
      self.new_scope_data_with(|data| {
        let isolate = data.isolate;
        data.scope_type_specific_data.init_with(|| {
          ScopeTypeSpecificData::HandleScope {
            raw_handle_scope: unsafe { raw::HandleScope::uninit() },
            raw_context_scope: None,
          }
        });
        match &mut data.scope_type_specific_data {
          ScopeTypeSpecificData::HandleScope {
            raw_handle_scope,
            raw_context_scope,
          } => {
            unsafe { raw_handle_scope.init(isolate) };
            init_context_fn(isolate, &mut data.context, raw_context_scope);
          }
          _ => unreachable!(),
        };
      })
    }

    pub(super) fn new_handle_scope_data(&mut self) -> &mut Self {
      self.new_handle_scope_data_with(|_, _, raw_context_scope| {
        debug_assert!(raw_context_scope.is_none())
      })
    }

    pub(super) fn new_handle_scope_data_with_context(
      &mut self,
      context_ref: &Context,
    ) -> &mut Self {
      self.new_handle_scope_data_with(
        move |isolate, context_data, raw_context_scope| unsafe {
          let context_nn = NonNull::from(context_ref);
          // Copy the `Context` reference to a new local handle to enure that it
          // cannot get garbage collected until after this scope is dropped.
          let local_context_ptr =
            raw::v8__Local__New(isolate.as_ptr(), context_nn.cast().as_ptr())
              as *const Context;
          let local_context_nn =
            NonNull::new_unchecked(local_context_ptr as *mut _);
          let local_context = Local::from_non_null(local_context_nn);
          // Initialize the `raw::ContextScope`. This enters the context too.
          debug_assert!(raw_context_scope.is_none());
          ptr::write(
            raw_context_scope,
            Some(raw::ContextScope::new(local_context)),
          );
          // Also store the newly created `Local<Context>` in the `Cell` that
          // serves as a look-up cache for the current context.
          context_data.set(Some(local_context_nn));
        },
      )
    }

    pub(super) fn new_escapable_handle_scope_data(&mut self) -> &mut Self {
      self.new_scope_data_with(|data| {
        // Note: the `raw_escape_slot` field must be initialized _before_ the
        // `raw_handle_scope` field, otherwise the escaped local handle ends up
        // inside the `EscapableHandleScope` that's being constructed here,
        // rather than escaping from it.
        let isolate = data.isolate;
        data.scope_type_specific_data.init_with(|| {
          ScopeTypeSpecificData::EscapableHandleScope {
            raw_handle_scope: unsafe { raw::HandleScope::uninit() },
            raw_escape_slot: Some(raw::EscapeSlot::new(isolate)),
          }
        });
        match &mut data.scope_type_specific_data {
          ScopeTypeSpecificData::EscapableHandleScope {
            raw_handle_scope,
            raw_escape_slot,
          } => {
            unsafe { raw_handle_scope.init(isolate) };
            data.escape_slot.replace(raw_escape_slot.into());
          }
          _ => unreachable!(),
        }
      })
    }

    pub(super) fn new_try_catch_data(&mut self) -> &mut Self {
      self.new_scope_data_with(|data| {
        let isolate = data.isolate;
        data.scope_type_specific_data.init_with(|| {
          ScopeTypeSpecificData::TryCatch {
            raw_try_catch: unsafe { raw::TryCatch::uninit() },
          }
        });
        match &mut data.scope_type_specific_data {
          ScopeTypeSpecificData::TryCatch { raw_try_catch } => {
            unsafe { raw_try_catch.init(isolate) };
            data.try_catch.replace(raw_try_catch.into());
          }
          _ => unreachable!(),
        }
      })
    }

    pub(super) fn new_callback_scope_data<'s>(
      &'s mut self,
      maybe_current_context: Option<Local<'s, Context>>,
    ) -> &'s mut Self {
      self.new_scope_data_with(|data| {
        debug_assert!(data.scope_type_specific_data.is_none());
        data
          .context
          .set(maybe_current_context.map(|cx| cx.as_non_null()));
      })
    }

    fn new_scope_data_with(
      &mut self,
      init_fn: impl FnOnce(&mut Self),
    ) -> &mut Self {
      // Mark this scope (the parent of the newly created scope) as 'shadowed';
      self.status.set(match self.status.get() {
        ScopeStatus::Current { zombie } => ScopeStatus::Shadowed { zombie },
        _ => unreachable!(),
      });
      // Copy fields that that will be inherited by the new scope.
      let context = self.context.get().into();
      let escape_slot = self.escape_slot;
      // Initialize the `struct ScopeData` for the new scope.
      let new_scope_data = self.allocate_or_reuse_scope_data();
      // In debug builds, `zombie` is initially set to `true`, and the flag is
      // later cleared in the `as_scope()` method, to verify that we're
      // always creating exactly one scope from any `ScopeData` object.
      // For performance reasons this check is not performed in release builds.
      new_scope_data.status = Cell::new(ScopeStatus::Current {
        zombie: cfg!(debug_assertions),
      });
      // Store fields inherited from the parent scope.
      new_scope_data.context = context;
      new_scope_data.escape_slot = escape_slot;
      (init_fn)(new_scope_data);
      // Make the newly created scope the 'current' scope for this isolate.
      let new_scope_nn = unsafe { NonNull::new_unchecked(new_scope_data) };
      new_scope_data
        .get_isolate_mut()
        .set_current_scope_data(Some(new_scope_nn));
      new_scope_data
    }

    /// Either returns an free `Box<ScopeData>` that is available for reuse,
    /// or allocates a new one on the heap.
    fn allocate_or_reuse_scope_data(&mut self) -> &mut Self {
      let self_nn = NonNull::new(self);
      match &mut self.next {
        Some(next_box) => {
          // Reuse a free `Box<ScopeData>` allocation.
          debug_assert_eq!(next_box.isolate, self.isolate);
          debug_assert_eq!(next_box.previous, self_nn);
          debug_assert_eq!(next_box.status.get(), ScopeStatus::Free);
          debug_assert!(next_box.scope_type_specific_data.is_none());
          next_box.as_mut()
        }
        next_field @ None => {
          // Allocate a new `Box<ScopeData>`.
          let mut next_box = Self::boxed(self.isolate);
          next_box.previous = self_nn;
          next_field.replace(next_box);
          next_field.as_mut().unwrap()
        }
      }
    }

    pub(super) fn as_scope<S: Scope>(&mut self) -> S {
      assert_eq!(Layout::new::<&mut Self>(), Layout::new::<S>());
      // In debug builds, a new initialized `ScopeStatus` will have the `zombie`
      // flag set, so we have to reset it. In release builds, new `ScopeStatus`
      // objects come with the `zombie` flag cleared, so no update is necessary.
      if cfg!(debug_assertions) {
        assert_eq!(self.status.get(), ScopeStatus::Current { zombie: true });
        self.status.set(ScopeStatus::Current { zombie: false });
      }
      let self_nn = NonNull::from(self);
      unsafe { ptr::read(&self_nn as *const _ as *const S) }
    }

    pub(super) fn get<S: Scope>(scope: &S) -> &Self {
      let self_mut = unsafe {
        (*(scope as *const S as *mut S as *mut NonNull<Self>)).as_mut()
      };
      self_mut.try_activate_scope();
      self_mut
    }

    pub(super) fn get_mut<S: Scope>(scope: &mut S) -> &mut Self {
      let self_mut =
        unsafe { (*(scope as *mut S as *mut NonNull<Self>)).as_mut() };
      self_mut.try_activate_scope();
      self_mut
    }

    #[inline(always)]
    fn try_activate_scope(mut self: &mut Self) -> &mut Self {
      self = match self.status.get() {
        ScopeStatus::Current { zombie: false } => self,
        ScopeStatus::Shadowed { zombie: false } => {
          self.next.as_mut().unwrap().try_exit_scope()
        }
        _ => unreachable!(),
      };
      debug_assert_eq!(
        self.get_isolate().get_current_scope_data(),
        NonNull::new(self as *mut _)
      );
      self
    }

    fn try_exit_scope(mut self: &mut Self) -> &mut Self {
      loop {
        self = match self.status.get() {
          ScopeStatus::Shadowed { .. } => {
            self.next.as_mut().unwrap().try_exit_scope()
          }
          ScopeStatus::Current { zombie: true } => break self.exit_scope(),
          ScopeStatus::Current { zombie: false } => {
            panic!("active scope can't be dropped")
          }
          _ => unreachable!(),
        }
      }
    }

    fn exit_scope(&mut self) -> &mut Self {
      // Clear out the scope type specific data field. None of the other fields
      // have a destructor, and there's no need to do any cleanup on them.
      self.scope_type_specific_data = Default::default();
      // Change the ScopeData's status field from 'Current' to 'Free', which
      // means that it is not associated with a scope and can be reused.
      self.status.set(ScopeStatus::Free);

      // Point the Isolate's current scope data slot at our parent scope.
      let previous_nn = self.previous.unwrap();
      self
        .get_isolate_mut()
        .set_current_scope_data(Some(previous_nn));
      // Update the parent scope's status field to reflect that it is now
      // 'Current' again an no longer 'Shadowed'.
      let previous_mut = unsafe { &mut *previous_nn.as_ptr() };
      previous_mut.status.set(match previous_mut.status.get() {
        ScopeStatus::Shadowed { zombie } => ScopeStatus::Current { zombie },
        _ => unreachable!(),
      });

      previous_mut
    }

    /// This function is called when any of the public scope objects (e.g
    /// `HandleScope`, `ContextScope`, etc.) are dropped.
    ///
    /// The Rust borrow checker allows values of type `HandleScope<'a>` and
    /// `EscapableHandleScope<'a, 'e>` to be dropped before their maximum
    /// lifetime ('a) is up. This creates a potential problem because any local
    /// handles that are created while these scopes are active are bound to
    /// that 'a lifetime. This means that we run the risk of creating local
    /// handles that outlive their creation scope.
    ///
    /// Therefore, we don't immediately exit the current scope at the very
    /// moment the user drops their Escapable/HandleScope handle.
    /// Instead, the current scope is marked as being a 'zombie': the scope
    /// itself is gone, but its data still on the stack. The zombie's data will
    /// be dropped when the user touches the parent scope; when that happens, it
    /// is certain that there are no accessible `Local<'a, T>` handles left,
    /// because the 'a lifetime ends there.
    ///
    /// Scope types that do no store local handles are exited immediately.
    pub(super) fn notify_scope_dropped(&mut self) {
      match &self.scope_type_specific_data {
        ScopeTypeSpecificData::HandleScope { .. }
        | ScopeTypeSpecificData::EscapableHandleScope { .. } => {
          // Defer scope exit until the parent scope is touched.
          self.status.set(match self.status.get() {
            ScopeStatus::Current { zombie: false } => {
              ScopeStatus::Current { zombie: true }
            }
            _ => unreachable!(),
          })
        }
        _ => {
          // Regular, immediate exit.
          self.exit_scope();
        }
      }
    }

    pub(crate) fn get_isolate(&self) -> &Isolate {
      unsafe { self.isolate.as_ref() }
    }

    pub(crate) fn get_isolate_mut(&mut self) -> &mut Isolate {
      unsafe { self.isolate.as_mut() }
    }

    pub(crate) fn get_isolate_ptr(&self) -> *mut Isolate {
      self.isolate.as_ptr()
    }

    pub(crate) fn get_current_context(&self) -> *const Context {
      // To avoid creating a new Local every time `get_current_context() is
      // called, the current context is usually cached in the `context` field.
      // If the `context` field contains `None`, this might mean that this cache
      // field never got populated, so we'll do that here when necessary.
      let get_current_context_from_isolate = || unsafe {
        raw::v8__Isolate__GetCurrentContext(self.get_isolate_ptr())
      };
      match self.context.get().map(|nn| nn.as_ptr() as *const _) {
        Some(context) => {
          debug_assert!(unsafe {
            raw::v8__Context__EQ(context, get_current_context_from_isolate())
          });
          context
        }
        None => {
          let context = get_current_context_from_isolate();
          self.context.set(NonNull::new(context as *mut _));
          context
        }
      }
    }

    pub(super) fn get_escape_slot_mut(
      &mut self,
    ) -> Option<&mut Option<raw::EscapeSlot>> {
      self
        .escape_slot
        .as_mut()
        .map(|escape_slot_nn| unsafe { escape_slot_nn.as_mut() })
    }

    pub(super) fn get_try_catch(&self) -> &raw::TryCatch {
      self
        .try_catch
        .as_ref()
        .map(|try_catch_nn| unsafe { try_catch_nn.as_ref() })
        .unwrap()
    }

    pub(super) fn get_try_catch_mut(&mut self) -> &mut raw::TryCatch {
      self
        .try_catch
        .as_mut()
        .map(|try_catch_nn| unsafe { try_catch_nn.as_mut() })
        .unwrap()
    }

    /// Returns a new `Box<ScopeData>` with the `isolate` field set as specified
    /// by the first parameter, and the other fields initialized to their
    /// default values. This function exists solely because it turns out that
    /// Rust doesn't optimize `Box::new(Self{ .. })` very well (a.k.a. not at
    /// all) in this case, which is why `std::alloc::alloc()` is used directly.
    fn boxed(isolate: NonNull<Isolate>) -> Box<Self> {
      unsafe {
        #[allow(clippy::cast_ptr_alignment)]
        let self_ptr = alloc(Layout::new::<Self>()) as *mut Self;
        ptr::write(
          self_ptr,
          Self {
            isolate,
            previous: Default::default(),
            next: Default::default(),
            status: Default::default(),
            context: Default::default(),
            escape_slot: Default::default(),
            try_catch: Default::default(),
            scope_type_specific_data: Default::default(),
          },
        );
        Box::from_raw(self_ptr)
      }
    }
  }

  #[derive(Debug, Clone, Copy, Eq, PartialEq)]
  enum ScopeStatus {
    Free,
    Current { zombie: bool },
    Shadowed { zombie: bool },
  }

  impl Default for ScopeStatus {
    fn default() -> Self {
      Self::Free
    }
  }

  #[derive(Debug)]
  enum ScopeTypeSpecificData {
    None,
    ContextScope {
      _raw_context_scope: raw::ContextScope,
    },
    HandleScope {
      raw_handle_scope: raw::HandleScope,
      raw_context_scope: Option<raw::ContextScope>,
    },
    EscapableHandleScope {
      raw_handle_scope: raw::HandleScope,
      raw_escape_slot: Option<raw::EscapeSlot>,
    },
    TryCatch {
      raw_try_catch: raw::TryCatch,
    },
  }

  impl Default for ScopeTypeSpecificData {
    fn default() -> Self {
      Self::None
    }
  }

  impl Drop for ScopeTypeSpecificData {
    fn drop(&mut self) {
      // For `HandleScope`s that also enter a `Context`, drop order matters. The
      // context is stored in a `Local` handle, which is allocated in this
      // scope's own private `raw::HandleScope`. When that `raw::HandleScope`
      // is dropped first, we immediately lose the `Local<Context>` handle,
      // which we need in order to exit `ContextScope`.
      if let Self::HandleScope {
        raw_context_scope, ..
      } = self
      {
        *raw_context_scope = None
      }
    }
  }

  impl ScopeTypeSpecificData {
    pub fn is_none(&self) -> bool {
      matches!(self, Self::None)
    }

    /// Replaces a `ScopeTypeSpecificData::None` value with the value returned
    /// from the specified closure. This function exists because initializing
    /// scopes is performance critical, and `ptr::write()` produces more
    /// efficient code than using a regular assign statement, which will try to
    /// drop the old value and move the new value into place, even after
    /// asserting `self.is_none()`.
    pub fn init_with(&mut self, init_fn: impl FnOnce() -> Self) {
      assert!(self.is_none());
      unsafe { ptr::write(self, (init_fn)()) }
    }
  }
}

/// The `raw` module contains prototypes for all the `extern C` functions that
/// are used in this file, as well as definitions for the types they operate on.
mod raw {
  use super::*;

  #[derive(Clone, Copy, Debug)]
  #[repr(transparent)]
  pub(super) struct Address(NonZeroUsize);

  #[derive(Debug)]
  pub(super) struct ContextScope {
    entered_context: NonNull<Context>,
  }

  impl ContextScope {
    pub fn new(context: Local<Context>) -> Self {
      unsafe { v8__Context__Enter(&*context) };
      Self {
        entered_context: context.as_non_null(),
      }
    }
  }

  impl Drop for ContextScope {
    fn drop(&mut self) {
      unsafe { v8__Context__Exit(self.entered_context.as_ptr()) };
    }
  }

  #[repr(C)]
  #[derive(Debug)]
  pub(super) struct HandleScope([MaybeUninit<usize>; 3]);

  impl HandleScope {
    /// Creates an uninitialized `HandleScope`.
    ///
    /// This function is marked unsafe because the caller must ensure that the
    /// returned value isn't dropped before `init()` has been called.
    pub unsafe fn uninit() -> Self {
      Self(MaybeUninit::uninit().assume_init())
    }

    /// This function is marked unsafe because `init()` must be called exactly
    /// once, no more and no less, after creating a `HandleScope` value with
    /// `HandleScope::uninit()`.
    pub unsafe fn init(&mut self, isolate: NonNull<Isolate>) {
      let buf = NonNull::from(self).cast();
      v8__HandleScope__CONSTRUCT(buf.as_ptr(), isolate.as_ptr());
    }
  }

  impl Drop for HandleScope {
    fn drop(&mut self) {
      unsafe { v8__HandleScope__DESTRUCT(self) };
    }
  }

  #[repr(transparent)]
  #[derive(Debug)]
  pub(super) struct EscapeSlot(NonNull<raw::Address>);

  impl EscapeSlot {
    pub fn new(isolate: NonNull<Isolate>) -> Self {
      unsafe {
        let undefined = raw::v8__Undefined(isolate.as_ptr()) as *const _;
        let local = raw::v8__Local__New(isolate.as_ptr(), undefined);
        let slot_address_ptr = local as *const Address as *mut _;
        let slot_address_nn = NonNull::new_unchecked(slot_address_ptr);
        Self(slot_address_nn)
      }
    }

    pub fn escape<'e, T>(self, value: Local<'_, T>) -> Local<'e, T>
    where
      for<'l> Local<'l, T>: Into<Local<'l, Data>>,
    {
      assert_eq!(Layout::new::<Self>(), Layout::new::<Local<T>>());
      unsafe {
        let undefined = Local::<Value>::from_non_null(self.0.cast());
        debug_assert!(undefined.is_undefined());
        let value_address = *(&*value as *const T as *const Address);
        ptr::write(self.0.as_ptr(), value_address);
        Local::from_non_null(self.0.cast())
      }
    }
  }

  #[repr(C)]
  #[derive(Debug)]
  pub(super) struct TryCatch([MaybeUninit<usize>; 6]);

  impl TryCatch {
    /// Creates an uninitialized `TryCatch`.
    ///
    /// This function is marked unsafe because the caller must ensure that the
    /// returned value isn't dropped before `init()` has been called.
    pub unsafe fn uninit() -> Self {
      Self(MaybeUninit::uninit().assume_init())
    }

    /// This function is marked unsafe because `init()` must be called exactly
    /// once, no more and no less, after creating a `TryCatch` value with
    /// `TryCatch::uninit()`.
    pub unsafe fn init(&mut self, isolate: NonNull<Isolate>) {
      let buf = NonNull::from(self).cast();
      v8__TryCatch__CONSTRUCT(buf.as_ptr(), isolate.as_ptr());
    }
  }

  impl Drop for TryCatch {
    fn drop(&mut self) {
      unsafe { v8__TryCatch__DESTRUCT(self) };
    }
  }

  extern "C" {
    pub(super) fn v8__Isolate__GetCurrentContext(
      isolate: *mut Isolate,
    ) -> *const Context;
    pub(super) fn v8__Isolate__GetEnteredOrMicrotaskContext(
      isolate: *mut Isolate,
    ) -> *const Context;
    pub(super) fn v8__Isolate__ThrowException(
      isolate: *mut Isolate,
      exception: *const Value,
    ) -> *const Value;
    pub(super) fn v8__Isolate__GetDataFromSnapshotOnce(
      this: *mut Isolate,
      index: usize,
    ) -> *const Data;

    pub(super) fn v8__Context__EQ(
      this: *const Context,
      other: *const Context,
    ) -> bool;
    pub(super) fn v8__Context__Enter(this: *const Context);
    pub(super) fn v8__Context__Exit(this: *const Context);
    pub(super) fn v8__Context__GetIsolate(this: *const Context)
      -> *mut Isolate;
    pub(super) fn v8__Context__GetDataFromSnapshotOnce(
      this: *const Context,
      index: usize,
    ) -> *const Data;

    pub(super) fn v8__HandleScope__CONSTRUCT(
      buf: *mut MaybeUninit<HandleScope>,
      isolate: *mut Isolate,
    );
    pub(super) fn v8__HandleScope__DESTRUCT(this: *mut HandleScope);

    pub(super) fn v8__Local__New(
      isolate: *mut Isolate,
      other: *const Data,
    ) -> *const Data;
    pub(super) fn v8__Undefined(isolate: *mut Isolate) -> *const Primitive;

    pub(super) fn v8__TryCatch__CONSTRUCT(
      buf: *mut MaybeUninit<TryCatch>,
      isolate: *mut Isolate,
    );
    pub(super) fn v8__TryCatch__DESTRUCT(this: *mut TryCatch);
    pub(super) fn v8__TryCatch__HasCaught(this: *const TryCatch) -> bool;
    pub(super) fn v8__TryCatch__CanContinue(this: *const TryCatch) -> bool;
    pub(super) fn v8__TryCatch__HasTerminated(this: *const TryCatch) -> bool;
    pub(super) fn v8__TryCatch__IsVerbose(this: *const TryCatch) -> bool;
    pub(super) fn v8__TryCatch__SetVerbose(this: *mut TryCatch, value: bool);
    pub(super) fn v8__TryCatch__SetCaptureMessage(
      this: *mut TryCatch,
      value: bool,
    );
    pub(super) fn v8__TryCatch__Reset(this: *mut TryCatch);
    pub(super) fn v8__TryCatch__Exception(
      this: *const TryCatch,
    ) -> *const Value;
    pub(super) fn v8__TryCatch__StackTrace(
      this: *const TryCatch,
      context: *const Context,
    ) -> *const Value;
    pub(super) fn v8__TryCatch__Message(
      this: *const TryCatch,
    ) -> *const Message;
    pub(super) fn v8__TryCatch__ReThrow(this: *mut TryCatch) -> *const Value;

    pub(super) fn v8__Message__GetIsolate(this: *const Message)
      -> *mut Isolate;
    pub(super) fn v8__Object__GetIsolate(this: *const Object) -> *mut Isolate;
    pub(super) fn v8__FunctionCallbackInfo__GetIsolate(
      this: *const FunctionCallbackInfo,
    ) -> *mut Isolate;
    pub(super) fn v8__PropertyCallbackInfo__GetIsolate(
      this: *const PropertyCallbackInfo,
    ) -> *mut Isolate;
  }
}

#[cfg(test)]
mod tests {
  use super::*;
  use crate::new_default_platform;
  use crate::Global;
  use crate::V8;
  use std::any::type_name;
  use std::sync::Once;

  trait SameType {}
  impl<A> SameType for (A, A) {}

  /// `AssertTypeOf` facilitates comparing types. The important difference with
  /// assigning a value to a variable with an explicitly stated type is that the
  /// latter allows coercions and dereferencing to change the type, whereas
  /// `AssertTypeOf` requires the compared types to match exactly.
  struct AssertTypeOf<'a, T>(pub &'a T);
  impl<'a, T> AssertTypeOf<'a, T> {
    pub fn is<A>(self)
    where
      (A, T): SameType,
    {
      assert_eq!(type_name::<A>(), type_name::<T>());
    }
  }

  fn initialize_v8() {
    static INIT: Once = Once::new();
    INIT.call_once(|| {
      V8::initialize_platform(new_default_platform(0, false).make_shared());
      V8::initialize();
    });
  }

  #[test]
  fn deref_types() {
    initialize_v8();
    let isolate = &mut Isolate::new(Default::default());
    AssertTypeOf(isolate).is::<OwnedIsolate>();
    let l1_hs = &mut HandleScope::new(isolate);
    AssertTypeOf(l1_hs).is::<HandleScope<()>>();
    let context = Context::new(l1_hs);
    {
      let l2_cxs = &mut ContextScope::new(l1_hs, context);
      AssertTypeOf(l2_cxs).is::<ContextScope<HandleScope>>();
      {
        let d = l2_cxs.deref_mut();
        AssertTypeOf(d).is::<HandleScope>();
        let d = d.deref_mut();
        AssertTypeOf(d).is::<HandleScope<()>>();
        let d = d.deref_mut();
        AssertTypeOf(d).is::<Isolate>();
      }
      {
        let l3_tc = &mut TryCatch::new(l2_cxs);
        AssertTypeOf(l3_tc).is::<TryCatch<HandleScope>>();
        let d = l3_tc.deref_mut();
        AssertTypeOf(d).is::<HandleScope>();
        let d = d.deref_mut();
        AssertTypeOf(d).is::<HandleScope<()>>();
        let d = d.deref_mut();
        AssertTypeOf(d).is::<Isolate>();
      }
      {
        let l3_ehs = &mut EscapableHandleScope::new(l2_cxs);
        AssertTypeOf(l3_ehs).is::<EscapableHandleScope>();
        {
          let l4_cxs = &mut ContextScope::new(l3_ehs, context);
          AssertTypeOf(l4_cxs).is::<ContextScope<EscapableHandleScope>>();
          let d = l4_cxs.deref_mut();
          AssertTypeOf(d).is::<EscapableHandleScope>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<HandleScope>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<HandleScope<()>>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<Isolate>();
        }
        {
          let l4_tc = &mut TryCatch::new(l3_ehs);
          AssertTypeOf(l4_tc).is::<TryCatch<EscapableHandleScope>>();
          let d = l4_tc.deref_mut();
          AssertTypeOf(d).is::<EscapableHandleScope>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<HandleScope>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<HandleScope<()>>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<Isolate>();
        }
      }
    }
    {
      let l2_tc = &mut TryCatch::new(l1_hs);
      AssertTypeOf(l2_tc).is::<TryCatch<HandleScope<()>>>();
      let d = l2_tc.deref_mut();
      AssertTypeOf(d).is::<HandleScope<()>>();
      let d = d.deref_mut();
      AssertTypeOf(d).is::<Isolate>();
    }
    {
      let l2_ehs = &mut EscapableHandleScope::new(l1_hs);
      AssertTypeOf(l2_ehs).is::<EscapableHandleScope<()>>();
      let l3_tc = &mut TryCatch::new(l2_ehs);
      AssertTypeOf(l3_tc).is::<TryCatch<EscapableHandleScope<()>>>();
      let d = l3_tc.deref_mut();
      AssertTypeOf(d).is::<EscapableHandleScope<()>>();
      let d = d.deref_mut();
      AssertTypeOf(d).is::<HandleScope<()>>();
      let d = d.deref_mut();
      AssertTypeOf(d).is::<Isolate>();
    }
    {
      // `CallbackScope` is meant to be used inside V8 API callback functions
      // only. It assumes that a `HandleScope` already exists on the stack, and
      // that a context has been entered. Push a `ContextScope` onto the stack
      // to also meet the second expectation.
      let _ = ContextScope::new(l1_hs, context);
      let l2_cbs = &mut unsafe { CallbackScope::new(context) };
      AssertTypeOf(l2_cbs).is::<CallbackScope>();
      let d = l2_cbs.deref_mut();
      AssertTypeOf(d).is::<HandleScope>();
      let d = d.deref_mut();
      AssertTypeOf(d).is::<HandleScope<()>>();
      let d = d.deref_mut();
      AssertTypeOf(d).is::<Isolate>();
    }
    {
      let isolate: &mut Isolate = l1_hs.as_mut();
      let l2_cbs = &mut unsafe { CallbackScope::new(isolate) };
      AssertTypeOf(l2_cbs).is::<CallbackScope<()>>();
      let d = l2_cbs.deref_mut();
      AssertTypeOf(d).is::<HandleScope<()>>();
      let d = d.deref_mut();
      AssertTypeOf(d).is::<Isolate>();
    }
  }

  #[test]
  fn new_scope_types() {
    initialize_v8();
    let isolate = &mut Isolate::new(Default::default());
    AssertTypeOf(isolate).is::<OwnedIsolate>();
    let global_context: Global<Context>;
    {
      let l1_hs = &mut HandleScope::new(isolate);
      AssertTypeOf(l1_hs).is::<HandleScope<()>>();
      let context = Context::new(l1_hs);
      global_context = Global::new(l1_hs, context);
      AssertTypeOf(&HandleScope::new(l1_hs)).is::<HandleScope<()>>();
      {
        let l2_cxs = &mut ContextScope::new(l1_hs, context);
        AssertTypeOf(l2_cxs).is::<ContextScope<HandleScope>>();
        AssertTypeOf(&ContextScope::new(l2_cxs, context))
          .is::<ContextScope<HandleScope>>();
        AssertTypeOf(&HandleScope::new(l2_cxs)).is::<HandleScope>();
        AssertTypeOf(&EscapableHandleScope::new(l2_cxs))
          .is::<EscapableHandleScope>();
        AssertTypeOf(&TryCatch::new(l2_cxs)).is::<TryCatch<HandleScope>>();
      }
      {
        let l2_ehs = &mut EscapableHandleScope::new(l1_hs);
        AssertTypeOf(l2_ehs).is::<EscapableHandleScope<()>>();
        AssertTypeOf(&HandleScope::new(l2_ehs))
          .is::<EscapableHandleScope<()>>();
        AssertTypeOf(&EscapableHandleScope::new(l2_ehs))
          .is::<EscapableHandleScope<()>>();
        {
          let l3_cxs = &mut ContextScope::new(l2_ehs, context);
          AssertTypeOf(l3_cxs).is::<ContextScope<EscapableHandleScope>>();
          AssertTypeOf(&ContextScope::new(l3_cxs, context))
            .is::<ContextScope<EscapableHandleScope>>();
          AssertTypeOf(&HandleScope::new(l3_cxs)).is::<EscapableHandleScope>();
          AssertTypeOf(&EscapableHandleScope::new(l3_cxs))
            .is::<EscapableHandleScope>();
          {
            let l4_tc = &mut TryCatch::new(l3_cxs);
            AssertTypeOf(l4_tc).is::<TryCatch<EscapableHandleScope>>();
            AssertTypeOf(&ContextScope::new(l4_tc, context))
              .is::<ContextScope<EscapableHandleScope>>();
            AssertTypeOf(&HandleScope::new(l4_tc)).is::<EscapableHandleScope>();
            AssertTypeOf(&EscapableHandleScope::new(l4_tc))
              .is::<EscapableHandleScope>();
            AssertTypeOf(&TryCatch::new(l4_tc))
              .is::<TryCatch<EscapableHandleScope>>();
          }
        }
        {
          let l3_tc = &mut TryCatch::new(l2_ehs);
          AssertTypeOf(l3_tc).is::<TryCatch<EscapableHandleScope<()>>>();
          AssertTypeOf(&ContextScope::new(l3_tc, context))
            .is::<ContextScope<EscapableHandleScope>>();
          AssertTypeOf(&HandleScope::new(l3_tc))
            .is::<EscapableHandleScope<()>>();
          AssertTypeOf(&EscapableHandleScope::new(l3_tc))
            .is::<EscapableHandleScope<()>>();
          AssertTypeOf(&TryCatch::new(l3_tc))
            .is::<TryCatch<EscapableHandleScope<()>>>();
        }
      }
      {
        let l2_tc = &mut TryCatch::new(l1_hs);
        AssertTypeOf(l2_tc).is::<TryCatch<HandleScope<()>>>();
        AssertTypeOf(&ContextScope::new(l2_tc, context))
          .is::<ContextScope<HandleScope>>();
        AssertTypeOf(&HandleScope::new(l2_tc)).is::<HandleScope<()>>();
        AssertTypeOf(&EscapableHandleScope::new(l2_tc))
          .is::<EscapableHandleScope<()>>();
        AssertTypeOf(&TryCatch::new(l2_tc)).is::<TryCatch<HandleScope<()>>>();
      }
      {
        let l2_cbs = &mut unsafe { CallbackScope::new(context) };
        AssertTypeOf(l2_cbs).is::<CallbackScope>();
        AssertTypeOf(&ContextScope::new(l2_cbs, context))
          .is::<ContextScope<HandleScope>>();
        {
          let l3_hs = &mut HandleScope::new(l2_cbs);
          AssertTypeOf(l3_hs).is::<HandleScope>();
          AssertTypeOf(&ContextScope::new(l3_hs, context))
            .is::<ContextScope<HandleScope>>();
          AssertTypeOf(&HandleScope::new(l3_hs)).is::<HandleScope>();
          AssertTypeOf(&EscapableHandleScope::new(l3_hs))
            .is::<EscapableHandleScope>();
          AssertTypeOf(&TryCatch::new(l3_hs)).is::<TryCatch<HandleScope>>();
        }
        {
          let l3_ehs = &mut EscapableHandleScope::new(l2_cbs);
          AssertTypeOf(l3_ehs).is::<EscapableHandleScope>();
          AssertTypeOf(&ContextScope::new(l3_ehs, context))
            .is::<ContextScope<EscapableHandleScope>>();
          AssertTypeOf(&HandleScope::new(l3_ehs)).is::<EscapableHandleScope>();
          AssertTypeOf(&EscapableHandleScope::new(l3_ehs))
            .is::<EscapableHandleScope>();
          AssertTypeOf(&TryCatch::new(l3_ehs))
            .is::<TryCatch<EscapableHandleScope>>();
        }
        {
          let l3_tc = &mut TryCatch::new(l2_cbs);
          AssertTypeOf(l3_tc).is::<TryCatch<HandleScope>>();
          AssertTypeOf(&ContextScope::new(l3_tc, context))
            .is::<ContextScope<HandleScope>>();
          AssertTypeOf(&HandleScope::new(l3_tc)).is::<HandleScope>();
          AssertTypeOf(&EscapableHandleScope::new(l3_tc))
            .is::<EscapableHandleScope>();
          AssertTypeOf(&TryCatch::new(l3_tc)).is::<TryCatch<HandleScope>>();
        }
      }
    }
    {
      let l1_cbs = &mut unsafe { CallbackScope::new(&mut *isolate) };
      AssertTypeOf(l1_cbs).is::<CallbackScope<()>>();
      let context = Context::new(l1_cbs);
      AssertTypeOf(&ContextScope::new(l1_cbs, context))
        .is::<ContextScope<HandleScope>>();
      AssertTypeOf(&HandleScope::new(l1_cbs)).is::<HandleScope<()>>();
      AssertTypeOf(&EscapableHandleScope::new(l1_cbs))
        .is::<EscapableHandleScope<()>>();
      AssertTypeOf(&TryCatch::new(l1_cbs)).is::<TryCatch<HandleScope<()>>>();
    }
    {
      AssertTypeOf(&HandleScope::with_context(isolate, &global_context))
        .is::<HandleScope>();
      AssertTypeOf(&HandleScope::with_context(isolate, global_context))
        .is::<HandleScope>();
    }
  }
}