1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// Copyright 2019-2021 the Deno authors. All rights reserved. MIT license.

use std::cell::Cell;
use std::ffi::c_void;
use std::ops::Deref;
use std::ptr;
use std::ptr::null_mut;
use std::ptr::NonNull;
use std::slice;

use crate::support::long;
use crate::support::Opaque;
use crate::support::Shared;
use crate::support::SharedPtrBase;
use crate::support::SharedRef;
use crate::support::UniquePtr;
use crate::support::UniqueRef;
use crate::ArrayBuffer;
use crate::HandleScope;
use crate::Isolate;
use crate::Local;

extern "C" {
  fn v8__ArrayBuffer__Allocator__NewDefaultAllocator() -> *mut Allocator;
  fn v8__ArrayBuffer__Allocator__NewRustAllocator(
    handle: *const c_void,
    vtable: *const RustAllocatorVtable<c_void>,
  ) -> *mut Allocator;
  fn v8__ArrayBuffer__Allocator__DELETE(this: *mut Allocator);
  fn v8__ArrayBuffer__New__with_byte_length(
    isolate: *mut Isolate,
    byte_length: usize,
  ) -> *const ArrayBuffer;
  fn v8__ArrayBuffer__New__with_backing_store(
    isolate: *mut Isolate,
    backing_store: *const SharedRef<BackingStore>,
  ) -> *const ArrayBuffer;
  fn v8__ArrayBuffer__Detach(this: *const ArrayBuffer);
  fn v8__ArrayBuffer__IsDetachable(this: *const ArrayBuffer) -> bool;
  fn v8__ArrayBuffer__ByteLength(this: *const ArrayBuffer) -> usize;
  fn v8__ArrayBuffer__GetBackingStore(
    this: *const ArrayBuffer,
  ) -> SharedRef<BackingStore>;
  fn v8__ArrayBuffer__NewBackingStore__with_byte_length(
    isolate: *mut Isolate,
    byte_length: usize,
  ) -> *mut BackingStore;
  fn v8__ArrayBuffer__NewBackingStore__with_data(
    data: *mut c_void,
    byte_length: usize,
    deleter: BackingStoreDeleterCallback,
    deleter_data: *mut c_void,
  ) -> *mut BackingStore;

  fn v8__BackingStore__Data(this: *const BackingStore) -> *mut c_void;
  fn v8__BackingStore__ByteLength(this: *const BackingStore) -> usize;
  fn v8__BackingStore__IsShared(this: *const BackingStore) -> bool;
  fn v8__BackingStore__DELETE(this: *mut BackingStore);

  fn std__shared_ptr__v8__BackingStore__COPY(
    ptr: *const SharedPtrBase<BackingStore>,
  ) -> SharedPtrBase<BackingStore>;
  fn std__shared_ptr__v8__BackingStore__CONVERT__std__unique_ptr(
    unique_ptr: UniquePtr<BackingStore>,
  ) -> SharedPtrBase<BackingStore>;
  fn std__shared_ptr__v8__BackingStore__get(
    ptr: *const SharedPtrBase<BackingStore>,
  ) -> *mut BackingStore;
  fn std__shared_ptr__v8__BackingStore__reset(
    ptr: *mut SharedPtrBase<BackingStore>,
  );
  fn std__shared_ptr__v8__BackingStore__use_count(
    ptr: *const SharedPtrBase<BackingStore>,
  ) -> long;

  fn std__shared_ptr__v8__ArrayBuffer__Allocator__COPY(
    ptr: *const SharedPtrBase<Allocator>,
  ) -> SharedPtrBase<Allocator>;
  fn std__shared_ptr__v8__ArrayBuffer__Allocator__CONVERT__std__unique_ptr(
    unique_ptr: UniquePtr<Allocator>,
  ) -> SharedPtrBase<Allocator>;
  fn std__shared_ptr__v8__ArrayBuffer__Allocator__get(
    ptr: *const SharedPtrBase<Allocator>,
  ) -> *mut Allocator;
  fn std__shared_ptr__v8__ArrayBuffer__Allocator__reset(
    ptr: *mut SharedPtrBase<Allocator>,
  );
  fn std__shared_ptr__v8__ArrayBuffer__Allocator__use_count(
    ptr: *const SharedPtrBase<Allocator>,
  ) -> long;
}

/// A thread-safe allocator that V8 uses to allocate |ArrayBuffer|'s memory.
/// The allocator is a global V8 setting. It has to be set via
/// Isolate::CreateParams.
///
/// Memory allocated through this allocator by V8 is accounted for as external
/// memory by V8. Note that V8 keeps track of the memory for all internalized
/// |ArrayBuffer|s. Responsibility for tracking external memory (using
/// Isolate::AdjustAmountOfExternalAllocatedMemory) is handed over to the
/// embedder upon externalization and taken over upon internalization (creating
/// an internalized buffer from an existing buffer).
///
/// Note that it is unsafe to call back into V8 from any of the allocator
/// functions.
///
/// This is called v8::ArrayBuffer::Allocator in C++. Rather than use the
/// namespace array_buffer, which will contain only the Allocator we opt in Rust
/// to allow it to live in the top level: v8::Allocator
#[repr(C)]
#[derive(Debug)]
pub struct Allocator(Opaque);

/// A wrapper around the V8 Allocator class.
#[repr(C)]
pub struct RustAllocatorVtable<T> {
  pub allocate: unsafe extern "C" fn(handle: &T, len: usize) -> *mut c_void,
  pub allocate_uninitialized:
    unsafe extern "C" fn(handle: &T, len: usize) -> *mut c_void,
  pub free: unsafe extern "C" fn(handle: &T, data: *mut c_void, len: usize),
  pub reallocate: unsafe extern "C" fn(
    handle: &T,
    data: *mut c_void,
    old_length: usize,
    new_length: usize,
  ) -> *mut c_void,
  pub drop: unsafe extern "C" fn(handle: *const T),
}

impl Shared for Allocator {
  fn clone(ptr: &SharedPtrBase<Self>) -> SharedPtrBase<Self> {
    unsafe { std__shared_ptr__v8__ArrayBuffer__Allocator__COPY(ptr) }
  }
  fn from_unique_ptr(unique_ptr: UniquePtr<Self>) -> SharedPtrBase<Self> {
    unsafe {
      std__shared_ptr__v8__ArrayBuffer__Allocator__CONVERT__std__unique_ptr(
        unique_ptr,
      )
    }
  }
  fn get(ptr: &SharedPtrBase<Self>) -> *const Self {
    unsafe { std__shared_ptr__v8__ArrayBuffer__Allocator__get(ptr) }
  }
  fn reset(ptr: &mut SharedPtrBase<Self>) {
    unsafe { std__shared_ptr__v8__ArrayBuffer__Allocator__reset(ptr) }
  }
  fn use_count(ptr: &SharedPtrBase<Self>) -> long {
    unsafe { std__shared_ptr__v8__ArrayBuffer__Allocator__use_count(ptr) }
  }
}

/// malloc/free based convenience allocator.
pub fn new_default_allocator() -> UniqueRef<Allocator> {
  unsafe {
    UniqueRef::from_raw(v8__ArrayBuffer__Allocator__NewDefaultAllocator())
  }
}

/// Creates an allocator managed by Rust code.
///
/// Marked `unsafe` because the caller must ensure that `handle` is valid and matches what `vtable` expects.
pub unsafe fn new_rust_allocator<T: Sized + Send + Sync + 'static>(
  handle: *const T,
  vtable: &'static RustAllocatorVtable<T>,
) -> UniqueRef<Allocator> {
  UniqueRef::from_raw(v8__ArrayBuffer__Allocator__NewRustAllocator(
    handle as *const c_void,
    vtable as *const RustAllocatorVtable<T>
      as *const RustAllocatorVtable<c_void>,
  ))
}

#[test]
fn test_rust_allocator() {
  use std::sync::atomic::{AtomicUsize, Ordering};
  use std::sync::Arc;

  unsafe extern "C" fn allocate(_: &AtomicUsize, _: usize) -> *mut c_void {
    unimplemented!()
  }
  unsafe extern "C" fn allocate_uninitialized(
    _: &AtomicUsize,
    _: usize,
  ) -> *mut c_void {
    unimplemented!()
  }
  unsafe extern "C" fn free(_: &AtomicUsize, _: *mut c_void, _: usize) {
    unimplemented!()
  }
  unsafe extern "C" fn reallocate(
    _: &AtomicUsize,
    _: *mut c_void,
    _: usize,
    _: usize,
  ) -> *mut c_void {
    unimplemented!()
  }
  unsafe extern "C" fn drop(x: *const AtomicUsize) {
    let arc = Arc::from_raw(x);
    arc.store(42, Ordering::SeqCst);
  }

  let retval = Arc::new(AtomicUsize::new(0));

  let vtable: &'static RustAllocatorVtable<AtomicUsize> =
    &RustAllocatorVtable {
      allocate,
      allocate_uninitialized,
      free,
      reallocate,
      drop,
    };
  unsafe { new_rust_allocator(Arc::into_raw(retval.clone()), vtable) };
  assert_eq!(retval.load(Ordering::SeqCst), 42);
  assert_eq!(Arc::strong_count(&retval), 1);
}

#[test]
fn test_default_allocator() {
  new_default_allocator();
}

impl Drop for Allocator {
  fn drop(&mut self) {
    unsafe { v8__ArrayBuffer__Allocator__DELETE(self) };
  }
}

pub type BackingStoreDeleterCallback = unsafe extern "C" fn(
  data: *mut c_void,
  byte_length: usize,
  deleter_data: *mut c_void,
);

pub unsafe extern "C" fn boxed_slice_deleter_callback(
  data: *mut c_void,
  byte_length: usize,
  _deleter_data: *mut c_void,
) {
  let slice_ptr = ptr::slice_from_raw_parts_mut(data as *mut u8, byte_length);
  let b = Box::from_raw(slice_ptr);
  drop(b);
}

pub unsafe extern "C" fn vec_deleter_callback(
  data: *mut c_void,
  byte_length: usize,
  deleter_data: *mut c_void,
) {
  let capacity = deleter_data as usize;
  drop(Vec::from_raw_parts(data as *mut u8, byte_length, capacity))
}

/// A wrapper around the backing store (i.e. the raw memory) of an array buffer.
/// See a document linked in http://crbug.com/v8/9908 for more information.
///
/// The allocation and destruction of backing stores is generally managed by
/// V8. Clients should always use standard C++ memory ownership types (i.e.
/// std::unique_ptr and std::shared_ptr) to manage lifetimes of backing stores
/// properly, since V8 internal objects may alias backing stores.
///
/// This object does not keep the underlying |ArrayBuffer::Allocator| alive by
/// default. Use Isolate::CreateParams::array_buffer_allocator_shared when
/// creating the Isolate to make it hold a reference to the allocator itself.
#[repr(C)]
#[derive(Debug)]
pub struct BackingStore([usize; 6]);

unsafe impl Send for BackingStore {}

impl BackingStore {
  /// Return a pointer to the beginning of the memory block for this backing
  /// store. The pointer is only valid as long as this backing store object
  /// lives.
  ///
  /// Might return `None` if the backing store has zero length.
  pub fn data(&self) -> Option<NonNull<c_void>> {
    let raw_ptr =
      unsafe { v8__BackingStore__Data(self as *const _ as *mut Self) };
    NonNull::new(raw_ptr)
  }

  /// The length (in bytes) of this backing store.
  pub fn byte_length(&self) -> usize {
    unsafe { v8__BackingStore__ByteLength(self) }
  }

  /// Indicates whether the backing store was created for an ArrayBuffer or
  /// a SharedArrayBuffer.
  pub fn is_shared(&self) -> bool {
    unsafe { v8__BackingStore__IsShared(self) }
  }
}

impl Deref for BackingStore {
  type Target = [Cell<u8>];

  /// Returns a [u8] slice refencing the data in the backing store.
  fn deref(&self) -> &Self::Target {
    // We use a dangling pointer if `self.data()` returns None because it's UB
    // to create even an empty slice from a null pointer.
    let data = self
      .data()
      .unwrap_or_else(NonNull::dangling)
      .cast::<Cell<u8>>();
    let len = self.byte_length();
    unsafe { slice::from_raw_parts(data.as_ptr(), len) }
  }
}

impl Drop for BackingStore {
  fn drop(&mut self) {
    unsafe { v8__BackingStore__DELETE(self) };
  }
}

impl Shared for BackingStore {
  fn clone(ptr: &SharedPtrBase<Self>) -> SharedPtrBase<Self> {
    unsafe { std__shared_ptr__v8__BackingStore__COPY(ptr) }
  }
  fn from_unique_ptr(unique_ptr: UniquePtr<Self>) -> SharedPtrBase<Self> {
    unsafe {
      std__shared_ptr__v8__BackingStore__CONVERT__std__unique_ptr(unique_ptr)
    }
  }
  fn get(ptr: &SharedPtrBase<Self>) -> *const Self {
    unsafe { std__shared_ptr__v8__BackingStore__get(ptr) }
  }
  fn reset(ptr: &mut SharedPtrBase<Self>) {
    unsafe { std__shared_ptr__v8__BackingStore__reset(ptr) }
  }
  fn use_count(ptr: &SharedPtrBase<Self>) -> long {
    unsafe { std__shared_ptr__v8__BackingStore__use_count(ptr) }
  }
}

impl ArrayBuffer {
  /// Create a new ArrayBuffer. Allocate |byte_length| bytes.
  /// Allocated memory will be owned by a created ArrayBuffer and
  /// will be deallocated when it is garbage-collected,
  /// unless the object is externalized.
  pub fn new<'s>(
    scope: &mut HandleScope<'s>,
    byte_length: usize,
  ) -> Local<'s, ArrayBuffer> {
    unsafe {
      scope.cast_local(|sd| {
        v8__ArrayBuffer__New__with_byte_length(
          sd.get_isolate_ptr(),
          byte_length,
        )
      })
    }
    .unwrap()
  }

  pub fn with_backing_store<'s>(
    scope: &mut HandleScope<'s>,
    backing_store: &SharedRef<BackingStore>,
  ) -> Local<'s, ArrayBuffer> {
    unsafe {
      scope.cast_local(|sd| {
        v8__ArrayBuffer__New__with_backing_store(
          sd.get_isolate_ptr(),
          backing_store,
        )
      })
    }
    .unwrap()
  }

  /// Data length in bytes.
  pub fn byte_length(&self) -> usize {
    unsafe { v8__ArrayBuffer__ByteLength(self) }
  }

  /// Returns true if this ArrayBuffer may be detached.
  pub fn is_detachable(&self) -> bool {
    unsafe { v8__ArrayBuffer__IsDetachable(self) }
  }

  /// Detaches this ArrayBuffer and all its views (typed arrays).
  /// Detaching sets the byte length of the buffer and all typed arrays to zero,
  /// preventing JavaScript from ever accessing underlying backing store.
  /// ArrayBuffer should have been externalized and must be detachable.
  pub fn detach(&self) {
    // V8 terminates when the ArrayBuffer is not detachable. Non-detachable
    // buffers are buffers that are in use by WebAssembly or asm.js.
    if self.is_detachable() {
      unsafe { v8__ArrayBuffer__Detach(self) }
    }
  }

  /// Get a shared pointer to the backing store of this array buffer. This
  /// pointer coordinates the lifetime management of the internal storage
  /// with any live ArrayBuffers on the heap, even across isolates. The embedder
  /// should not attempt to manage lifetime of the storage through other means.
  pub fn get_backing_store(&self) -> SharedRef<BackingStore> {
    unsafe { v8__ArrayBuffer__GetBackingStore(self) }
  }

  /// Returns a new standalone BackingStore that is allocated using the array
  /// buffer allocator of the isolate. The result can be later passed to
  /// ArrayBuffer::New.
  ///
  /// If the allocator returns nullptr, then the function may cause GCs in the
  /// given isolate and re-try the allocation. If GCs do not help, then the
  /// function will crash with an out-of-memory error.
  pub fn new_backing_store(
    scope: &mut Isolate,
    byte_length: usize,
  ) -> UniqueRef<BackingStore> {
    unsafe {
      UniqueRef::from_raw(v8__ArrayBuffer__NewBackingStore__with_byte_length(
        scope,
        byte_length,
      ))
    }
  }

  /// Returns a new standalone BackingStore that takes over the ownership of
  /// the given buffer.
  ///
  /// The destructor of the BackingStore frees owned buffer memory.
  ///
  /// The result can be later passed to ArrayBuffer::New. The raw pointer
  /// to the buffer must not be passed again to any V8 API function.
  pub fn new_backing_store_from_boxed_slice(
    data: Box<[u8]>,
  ) -> UniqueRef<BackingStore> {
    let byte_length = data.len();
    let data_ptr = Box::into_raw(data) as *mut c_void;
    unsafe {
      UniqueRef::from_raw(v8__ArrayBuffer__NewBackingStore__with_data(
        data_ptr,
        byte_length,
        boxed_slice_deleter_callback,
        null_mut(),
      ))
    }
  }

  /// Returns a new standalone BackingStore that takes over the ownership of
  /// the given buffer.
  ///
  /// The destructor of the BackingStore frees owned buffer memory.
  ///
  /// The result can be later passed to ArrayBuffer::New. The raw pointer
  /// to the buffer must not be passed again to any V8 API function.
  pub fn new_backing_store_from_vec(
    mut data: Vec<u8>,
  ) -> UniqueRef<BackingStore> {
    let byte_length = data.len();
    let capacity = data.capacity();
    let data_ptr = data.as_mut_ptr() as *mut c_void;
    std::mem::forget(data);
    unsafe {
      UniqueRef::from_raw(v8__ArrayBuffer__NewBackingStore__with_data(
        data_ptr,
        byte_length,
        vec_deleter_callback,
        capacity as *mut c_void,
      ))
    }
  }

  /// Returns a new standalone BackingStore backed by given ptr.
  ///
  /// SAFETY: This API consumes raw pointers so is inherently
  /// unsafe. Usually you should use new_backing_store_from_boxed_slice.
  pub unsafe fn new_backing_store_from_ptr(
    data_ptr: *mut c_void,
    byte_length: usize,
    deleter_callback: BackingStoreDeleterCallback,
    deleter_data: *mut c_void,
  ) -> UniqueRef<BackingStore> {
    UniqueRef::from_raw(v8__ArrayBuffer__NewBackingStore__with_data(
      data_ptr,
      byte_length,
      deleter_callback,
      deleter_data,
    ))
  }
}