1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
#![allow(
    clippy::too_many_arguments,
    clippy::let_and_return,
    clippy::from_over_into
)]

use crate::{Euler, Quaternion};

use glib::translate::*;
use std::boxed::Box as Box_;
use std::mem;

glib_wrapper! {
    #[derive(Debug, PartialOrd, Ord)] // Hash
    pub struct Matrix(Boxed<ffi::CoglMatrix>);

    match fn {
        copy => |ptr| ffi::cogl_matrix_copy(mut_override(ptr)),
        free => |ptr| ffi::cogl_matrix_free(ptr),
        get_type => || ffi::cogl_matrix_get_gtype(),
    }
}

impl Matrix {
    /// Multiplies `self` by the given frustum perspective matrix.
    /// ## `left`
    /// X position of the left clipping plane where it
    ///  intersects the near clipping plane
    /// ## `right`
    /// X position of the right clipping plane where it
    ///  intersects the near clipping plane
    /// ## `bottom`
    /// Y position of the bottom clipping plane where it
    ///  intersects the near clipping plane
    /// ## `top`
    /// Y position of the top clipping plane where it intersects
    ///  the near clipping plane
    /// ## `z_near`
    /// The distance to the near clipping plane (Must be positive)
    /// ## `z_far`
    /// The distance to the far clipping plane (Must be positive)
    pub fn frustum(
        &mut self,
        left: f32,
        right: f32,
        bottom: f32,
        top: f32,
        z_near: f32,
        z_far: f32,
    ) {
        unsafe {
            ffi::cogl_matrix_frustum(
                self.to_glib_none_mut().0,
                left,
                right,
                bottom,
                top,
                z_near,
                z_far,
            );
        }
    }

    //TODO:
    // /// Casts `self` to a float array which can be directly passed to OpenGL.
    // ///
    // /// # Returns
    // ///
    // /// a pointer to the float array
    // pub fn get_array(&self) -> &[f32] {
    //     unsafe { ffi::cogl_matrix_get_array(self.to_glib_none().0) };
    // }

    /// Gets the inverse transform of a given matrix and uses it to initialize
    /// a new `Matrix`.
    ///
    /// `<note>`Although the first parameter is annotated as const to indicate
    /// that the transform it represents isn't modified this function may
    /// technically save a copy of the inverse transform within the given
    /// `Matrix` so that subsequent requests for the inverse transform may
    /// avoid costly inversion calculations.`</note>`
    /// ## `inverse`
    /// The destination for a 4x4 inverse transformation matrix
    ///
    /// # Returns
    ///
    /// `true` if the inverse was successfully calculated or `false`
    ///  for degenerate transformations that can't be inverted (in this case the
    ///  `inverse` matrix will simply be initialized with the identity matrix)
    pub fn get_inverse(&self) -> (bool, Matrix) {
        unsafe {
            let mut inverse = Matrix::uninitialized();
            let ret =
                ffi::cogl_matrix_get_inverse(self.to_glib_none().0, inverse.to_glib_none_mut().0);
            (ret == crate::TRUE, inverse)
        }
    }

    /// Initializes `self` with the contents of `array`
    /// ## `array`
    /// A linear array of 16 floats (column-major order)
    pub fn init_from_array(&mut self, array: &[f32]) {
        unsafe {
            ffi::cogl_matrix_init_from_array(self.to_glib_none_mut().0, array.as_ptr());
        }
    }

    /// Initializes `self` from a `Euler` rotation.
    ///
    /// ## `euler`
    /// A `Euler`
    pub fn init_from_euler(&mut self, euler: &Euler) {
        unsafe {
            ffi::cogl_matrix_init_from_euler(self.to_glib_none_mut().0, euler.to_glib_none().0);
        }
    }

    /// Initializes `self` from a `Quaternion` rotation.
    /// ## `quaternion`
    /// A `Quaternion`
    pub fn init_from_quaternion(&mut self, quaternion: &Quaternion) {
        unsafe {
            ffi::cogl_matrix_init_from_quaternion(
                self.to_glib_none_mut().0,
                quaternion.to_glib_none().0,
            );
        }
    }

    /// Resets matrix to the identity matrix:
    ///
    ///
    /// ```text
    ///   .xx=1; .xy=0; .xz=0; .xw=0;
    ///   .yx=0; .yy=1; .yz=0; .yw=0;
    ///   .zx=0; .zy=0; .zz=1; .zw=0;
    ///   .wx=0; .wy=0; .wz=0; .ww=1;
    /// ```
    pub fn init_identity(&mut self) {
        unsafe {
            ffi::cogl_matrix_init_identity(self.to_glib_none_mut().0);
        }
    }

    /// Resets matrix to the (tx, ty, tz) translation matrix:
    ///
    ///
    /// ```text
    ///   .xx=1; .xy=0; .xz=0; .xw=tx;
    ///   .yx=0; .yy=1; .yz=0; .yw=ty;
    ///   .zx=0; .zy=0; .zz=1; .zw=tz;
    ///   .wx=0; .wy=0; .wz=0; .ww=1;
    /// ```
    ///
    /// ## `tx`
    /// x coordinate of the translation vector
    /// ## `ty`
    /// y coordinate of the translation vector
    /// ## `tz`
    /// z coordinate of the translation vector
    pub fn init_translation(&mut self, tx: f32, ty: f32, tz: f32) {
        unsafe {
            ffi::cogl_matrix_init_translation(self.to_glib_none_mut().0, tx, ty, tz);
        }
    }

    /// Determines if the given matrix is an identity matrix.
    ///
    /// # Returns
    ///
    /// `true` if `self` is an identity matrix else `false`
    pub fn is_identity(&self) -> bool {
        unsafe { ffi::cogl_matrix_is_identity(self.to_glib_none().0) == crate::TRUE }
    }

    /// Applies a view transform `self` that positions the camera at
    /// the coordinate (`eye_position_x`, `eye_position_y`, `eye_position_z`)
    /// looking towards an object at the coordinate (`object_x`, `object_y`,
    /// `object_z`). The top of the camera is aligned to the given world up
    /// vector, which is normally simply (0, 1, 0) to map up to the
    /// positive direction of the y axis.
    ///
    /// Because there is a lot of missleading documentation online for
    /// gluLookAt regarding the up vector we want to try and be a bit
    /// clearer here.
    ///
    /// The up vector should simply be relative to your world coordinates
    /// and does not need to change as you move the eye and object
    /// positions. Many online sources may claim that the up vector needs
    /// to be perpendicular to the vector between the eye and object
    /// position (partly because the man page is somewhat missleading) but
    /// that is not necessary for this function.
    ///
    /// `<note>`You should never look directly along the world-up
    /// vector.`</note>`
    ///
    /// `<note>`It is assumed you are using a typical projection matrix where
    /// your origin maps to the center of your viewport.`</note>`
    ///
    /// `<note>`Almost always when you use this function it should be the first
    /// transform applied to a new modelview transform`</note>`
    /// ## `eye_position_x`
    /// The X coordinate to look from
    /// ## `eye_position_y`
    /// The Y coordinate to look from
    /// ## `eye_position_z`
    /// The Z coordinate to look from
    /// ## `object_x`
    /// The X coordinate of the object to look at
    /// ## `object_y`
    /// The Y coordinate of the object to look at
    /// ## `object_z`
    /// The Z coordinate of the object to look at
    /// ## `world_up_x`
    /// The X component of the world's up direction vector
    /// ## `world_up_y`
    /// The Y component of the world's up direction vector
    /// ## `world_up_z`
    /// The Z component of the world's up direction vector
    pub fn look_at(
        &mut self,
        eye_position_x: f32,
        eye_position_y: f32,
        eye_position_z: f32,
        object_x: f32,
        object_y: f32,
        object_z: f32,
        world_up_x: f32,
        world_up_y: f32,
        world_up_z: f32,
    ) {
        unsafe {
            ffi::cogl_matrix_look_at(
                self.to_glib_none_mut().0,
                eye_position_x,
                eye_position_y,
                eye_position_z,
                object_x,
                object_y,
                object_z,
                world_up_x,
                world_up_y,
                world_up_z,
            );
        }
    }

    /// Multiplies the two supplied matrices together and stores
    /// the resulting matrix inside `self`.
    ///
    /// `<note>`It is possible to multiply the `a` matrix in-place, so
    /// `self` can be equal to `a` but can't be equal to `b`.`</note>`
    /// ## `a`
    /// A 4x4 transformation matrix
    /// ## `b`
    /// A 4x4 transformation matrix
    pub fn multiply(&mut self, a: &Matrix, b: &Matrix) {
        unsafe {
            ffi::cogl_matrix_multiply(
                self.to_glib_none_mut().0,
                a.to_glib_none().0,
                b.to_glib_none().0,
            );
        }
    }

    /// Multiplies `self` by a parallel projection matrix.
    /// ## `x_1`
    /// The x coordinate for the first vertical clipping plane
    /// ## `y_1`
    /// The y coordinate for the first horizontal clipping plane
    /// ## `x_2`
    /// The x coordinate for the second vertical clipping plane
    /// ## `y_2`
    /// The y coordinate for the second horizontal clipping plane
    /// ## `near`
    /// The `<emphasis>`distance`</emphasis>` to the near clipping
    ///  plane (will be `<emphasis>`negative`</emphasis>` if the plane is
    ///  behind the viewer)
    /// ## `far`
    /// The `<emphasis>`distance`</emphasis>` to the far clipping
    ///  plane (will be `<emphasis>`negative`</emphasis>` if the plane is
    ///  behind the viewer)
    pub fn orthographic(&mut self, x_1: f32, y_1: f32, x_2: f32, y_2: f32, near: f32, far: f32) {
        unsafe {
            ffi::cogl_matrix_orthographic(self.to_glib_none_mut().0, x_1, y_1, x_2, y_2, near, far);
        }
    }

    /// Multiplies `self` by the described perspective matrix
    ///
    /// `<note>`You should be careful not to have to great a `z_far` / `z_near`
    /// ratio since that will reduce the effectiveness of depth testing
    /// since there wont be enough precision to identify the depth of
    /// objects near to each other.`</note>`
    /// ## `fov_y`
    /// Vertical field of view angle in degrees.
    /// ## `aspect`
    /// The (width over height) aspect ratio for display
    /// ## `z_near`
    /// The distance to the near clipping plane (Must be positive,
    ///  and must not be 0)
    /// ## `z_far`
    /// The distance to the far clipping plane (Must be positive)
    pub fn perspective(&mut self, fov_y: f32, aspect: f32, z_near: f32, z_far: f32) {
        unsafe {
            ffi::cogl_matrix_perspective(self.to_glib_none_mut().0, fov_y, aspect, z_near, z_far);
        }
    }

    //pub fn project_points(&self, n_components: i32, stride_in: usize, points_in: /*Unimplemented*/Option<Fundamental: Pointer>, stride_out: usize, points_out: /*Unimplemented*/Option<Fundamental: Pointer>, n_points: i32) {
    //    unsafe { TODO: call cogl_sys:cogl_matrix_project_points() }
    //}

    /// Multiplies `self` with a rotation matrix that applies a rotation
    /// of `angle` degrees around the specified 3D vector.
    /// ## `angle`
    /// The angle you want to rotate in degrees
    /// ## `x`
    /// X component of your rotation vector
    /// ## `y`
    /// Y component of your rotation vector
    /// ## `z`
    /// Z component of your rotation vector
    pub fn rotate(&mut self, angle: f32, x: f32, y: f32, z: f32) {
        unsafe {
            ffi::cogl_matrix_rotate(self.to_glib_none_mut().0, angle, x, y, z);
        }
    }

    /// Multiplies `self` with a rotation transformation described by the
    /// given `Euler`.
    ///
    /// ## `euler`
    /// A euler describing a rotation
    pub fn rotate_euler(&mut self, euler: &Euler) {
        unsafe {
            ffi::cogl_matrix_rotate_euler(self.to_glib_none_mut().0, euler.to_glib_none().0);
        }
    }

    /// Multiplies `self` with a rotation transformation described by the
    /// given `Quaternion`.
    ///
    /// ## `quaternion`
    /// A quaternion describing a rotation
    pub fn rotate_quaternion(&mut self, quaternion: &Quaternion) {
        unsafe {
            ffi::cogl_matrix_rotate_quaternion(
                self.to_glib_none_mut().0,
                quaternion.to_glib_none().0,
            );
        }
    }

    /// Multiplies `self` with a transform matrix that scales along the X,
    /// Y and Z axis.
    /// ## `sx`
    /// The X scale factor
    /// ## `sy`
    /// The Y scale factor
    /// ## `sz`
    /// The Z scale factor
    pub fn scale(&mut self, sx: f32, sy: f32, sz: f32) {
        unsafe {
            ffi::cogl_matrix_scale(self.to_glib_none_mut().0, sx, sy, sz);
        }
    }

    /// Transforms a point whos position is given and returned as four float
    /// components.
    /// ## `x`
    /// The X component of your points position
    /// ## `y`
    /// The Y component of your points position
    /// ## `z`
    /// The Z component of your points position
    /// ## `w`
    /// The W component of your points position
    pub fn transform_point(&self, x: &mut f32, y: &mut f32, z: &mut f32, w: &mut f32) {
        unsafe {
            ffi::cogl_matrix_transform_point(self.to_glib_none().0, x, y, z, w);
        }
    }

    //pub fn transform_points(&self, n_components: i32, stride_in: usize, points_in: /*Unimplemented*/Option<Fundamental: Pointer>, stride_out: usize, points_out: /*Unimplemented*/Option<Fundamental: Pointer>, n_points: i32) {
    //    unsafe { TODO: call cogl_sys:cogl_matrix_transform_points() }
    //}

    /// Multiplies `self` with a transform matrix that translates along
    /// the X, Y and Z axis.
    /// ## `x`
    /// The X translation you want to apply
    /// ## `y`
    /// The Y translation you want to apply
    /// ## `z`
    /// The Z translation you want to apply
    pub fn translate(&mut self, x: f32, y: f32, z: f32) {
        unsafe {
            ffi::cogl_matrix_translate(self.to_glib_none_mut().0, x, y, z);
        }
    }

    /// Replaces `self` with its transpose. Ie, every element (i,j) in the
    /// new matrix is taken from element (j,i) in the old matrix.
    pub fn transpose(&mut self) {
        unsafe {
            ffi::cogl_matrix_transpose(self.to_glib_none_mut().0);
        }
    }

    /// Multiplies `self` by a view transform that maps the 2D coordinates
    /// (0,0) top left and (`width_2d`,`height_2d`) bottom right the full viewport
    /// size. Geometry at a depth of 0 will now lie on this 2D plane.
    ///
    /// Note: this doesn't multiply the matrix by any projection matrix,
    /// but it assumes you have a perspective projection as defined by
    /// passing the corresponding arguments to `Matrix::frustum`.
    ///
    /// Toolkits such as Clutter that mix 2D and 3D drawing can use this to
    /// create a 2D coordinate system within a 3D perspective projected
    /// view frustum.
    /// ## `left`
    /// coord of left vertical clipping plane
    /// ## `right`
    /// coord of right vertical clipping plane
    /// ## `bottom`
    /// coord of bottom horizontal clipping plane
    /// ## `top`
    /// coord of top horizontal clipping plane
    /// ## `z_near`
    /// The distance to the near clip plane. Never pass 0 and always pass
    ///  a positive number.
    /// ## `z_2d`
    /// The distance to the 2D plane. (Should always be positive and
    ///  be between `z_near` and the z_far value that was passed to
    ///  `Matrix::frustum`)
    /// ## `width_2d`
    /// The width of the 2D coordinate system
    /// ## `height_2d`
    /// The height of the 2D coordinate system
    pub fn view_2d_in_frustum(
        &mut self,
        left: f32,
        right: f32,
        bottom: f32,
        top: f32,
        z_near: f32,
        z_2d: f32,
        width_2d: f32,
        height_2d: f32,
    ) {
        unsafe {
            ffi::cogl_matrix_view_2d_in_frustum(
                self.to_glib_none_mut().0,
                left,
                right,
                bottom,
                top,
                z_near,
                z_2d,
                width_2d,
                height_2d,
            );
        }
    }

    /// Multiplies `self` by a view transform that maps the 2D coordinates
    /// (0,0) top left and (`width_2d`,`height_2d`) bottom right the full viewport
    /// size. Geometry at a depth of 0 will now lie on this 2D plane.
    ///
    /// Note: this doesn't multiply the matrix by any projection matrix,
    /// but it assumes you have a perspective projection as defined by
    /// passing the corresponding arguments to `Matrix::perspective`.
    ///
    /// Toolkits such as Clutter that mix 2D and 3D drawing can use this to
    /// create a 2D coordinate system within a 3D perspective projected
    /// view frustum.
    /// ## `fov_y`
    /// A field of view angle for the Y axis
    /// ## `aspect`
    /// The ratio of width to height determining the field of view angle
    ///  for the x axis.
    /// ## `z_near`
    /// The distance to the near clip plane. Never pass 0 and always pass
    ///  a positive number.
    /// ## `z_2d`
    /// The distance to the 2D plane. (Should always be positive and
    ///  be between `z_near` and the z_far value that was passed to
    ///  `Matrix::frustum`)
    /// ## `width_2d`
    /// The width of the 2D coordinate system
    /// ## `height_2d`
    /// The height of the 2D coordinate system
    pub fn view_2d_in_perspective(
        &mut self,
        fov_y: f32,
        aspect: f32,
        z_near: f32,
        z_2d: f32,
        width_2d: f32,
        height_2d: f32,
    ) {
        unsafe {
            ffi::cogl_matrix_view_2d_in_perspective(
                self.to_glib_none_mut().0,
                fov_y,
                aspect,
                z_near,
                z_2d,
                width_2d,
                height_2d,
            );
        }
    }

    fn equal(v1: &Self, v2: &Self) -> bool {
        let a = Box_::into_raw(Box::new(v1)) as *mut _;
        let b = Box_::into_raw(Box::new(v2)) as *mut _;
        unsafe { ffi::cogl_matrix_equal(a, b) == crate::TRUE }
    }
}

#[doc(hidden)]
impl Uninitialized for Matrix {
    #[inline]
    unsafe fn uninitialized() -> Self {
        mem::zeroed()
    }
}

impl PartialEq for Matrix {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        Matrix::equal(self, other)
    }
}

impl Eq for Matrix {}