1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
use crate::{
    Bitmap, Color, ColorMask, Context, Euler, Fence, FenceClosure, Matrix, Object, Pipeline,
    PixelFormat, Primitive, ReadPixelsFlags, StereoMode, Texture,
};

use crate::Quaternion;

use glib::object::IsA;
use glib::translate::*;

use std::boxed::Box as Box_;
use std::{fmt, ptr};

glib_wrapper! {
    pub struct Framebuffer(Interface<ffi::CoglFramebuffer>) @requires Object;

    match fn {
        get_type => || ffi::cogl_framebuffer_get_gtype(),
    }
}

impl Framebuffer {
    pub fn error_quark() -> u32 {
        unsafe { ffi::cogl_framebuffer_error_quark() }
    }
}

/// Trait containing all `Framebuffer` methods.
///
/// # Implementors
///
/// [`Framebuffer`](struct.Framebuffer.html), [`Onscreen`](struct.Onscreen.html)
pub trait FramebufferExt: 'static {
    /// Calls the provided callback when all previously-submitted commands have
    /// been executed by the GPU.
    ///
    /// Returns non-NULL if the fence succeeded, or `None` if it was unable to
    /// be inserted and the callback will never be called. The user does not
    /// need to free the closure; it will be freed automatically when the
    /// callback is called, or cancelled.
    ///
    /// ## `callback`
    /// A `CoglFenceCallback` to be called when
    ///  all commands submitted to Cogl have been executed
    /// ## `user_data`
    /// Private data that will be passed to the callback
    fn add_fence_callback<P: Fn(&Fence) + 'static>(&self, callback: P) -> Option<FenceClosure>;

    /// Explicitly allocates a configured `Framebuffer` allowing developers to
    /// check and handle any errors that might arise from an unsupported
    /// configuration so that fallback configurations may be tried.
    ///
    /// `<note>`Many applications don't support any fallback options at least when
    /// they are initially developed and in that case the don't need to use this API
    /// since Cogl will automatically allocate a framebuffer when it first gets
    /// used. The disadvantage of relying on automatic allocation is that the
    /// program will abort with an error message if there is an error during
    /// automatic allocation.`</note>`
    ///
    /// # Returns
    ///
    /// `true` if there were no error allocating the framebuffer, else `false`.
    fn allocate(&self) -> Result<bool, glib::Error>;

    /// Removes a fence previously submitted with
    /// `Framebuffer::add_fence_callback`; the callback will not be
    /// called.
    ///
    /// ## `closure`
    /// The `FenceClosure` returned from
    ///  `Framebuffer::add_fence_callback`
    fn cancel_fence_callback(&self, closure: &mut FenceClosure);

    /// Clears all the auxiliary buffers identified in the `buffers` mask, and if
    /// that includes the color buffer then the specified `color` is used.
    /// ## `buffers`
    /// A mask of `BufferBit`<!-- -->'s identifying which auxiliary
    ///  buffers to clear
    /// ## `color`
    /// The color to clear the color buffer too if specified in
    ///  `buffers`.
    fn clear(&self, buffers: libc::c_ulong, color: &Color);

    /// Clears all the auxiliary buffers identified in the `buffers` mask, and if
    /// that includes the color buffer then the specified `color` is used.
    /// ## `buffers`
    /// A mask of `BufferBit`<!-- -->'s identifying which auxiliary
    ///  buffers to clear
    /// ## `red`
    /// The red component of color to clear the color buffer too if
    ///  specified in `buffers`.
    /// ## `green`
    /// The green component of color to clear the color buffer too if
    ///  specified in `buffers`.
    /// ## `blue`
    /// The blue component of color to clear the color buffer too if
    ///  specified in `buffers`.
    /// ## `alpha`
    /// The alpha component of color to clear the color buffer too if
    ///  specified in `buffers`.
    fn clear4f(&self, buffers: libc::c_ulong, red: f32, green: f32, blue: f32, alpha: f32);

    /// Declares that the specified `buffers` no longer need to be referenced
    /// by any further rendering commands. This can be an important
    /// optimization to avoid subsequent frames of rendering depending on
    /// the results of a previous frame.
    ///
    /// For example; some tile-based rendering GPUs are able to avoid allocating and
    /// accessing system memory for the depth and stencil buffer so long as these
    /// buffers are not required as input for subsequent frames and that can save a
    /// significant amount of memory bandwidth used to save and restore their
    /// contents to system memory between frames.
    ///
    /// It is currently considered an error to try and explicitly discard the color
    /// buffer by passing `BufferBit::Color`. This is because the color buffer is
    /// already implicitly discard when you finish rendering to a `Onscreen`
    /// framebuffer, and it's not meaningful to try and discard the color buffer of
    /// a `CoglOffscreen` framebuffer since they are single-buffered.
    /// ## `buffers`
    /// A `BufferBit` mask of which ancillary buffers you want
    ///  to discard.
    fn discard_buffers(&self, buffers: libc::c_ulong);

    /// Draws a textured rectangle to `self` with the given `pipeline`
    /// state with the top left corner positioned at (`x_1`, `y_1`) and the
    /// bottom right corner positioned at (`x_2`, `y_2`). As a pipeline may
    /// contain multiple texture layers this interface lets you supply
    /// texture coordinates for each layer of the pipeline.
    ///
    /// `<note>`The position is the position before the rectangle has been
    /// transformed by the model-view matrix and the projection
    /// matrix.`</note>`
    ///
    /// This is a high level drawing api that can handle any kind of
    /// `MetaTexture` texture for the first layer such as
    /// `Texture2DSliced` textures which may internally be comprised of
    /// multiple low-level textures. This is unlike low-level drawing apis
    /// such as `Primitive::draw` which only support low level texture
    /// types that are directly supported by GPUs such as `Texture2D`.
    ///
    /// `<note>`This api can not currently handle multiple high-level meta
    /// texture layers. The first layer may be a high level meta texture
    /// such as `Texture2DSliced` but all other layers much be low
    /// level textures such as `Texture2D` and additionally they
    /// should be textures that can be sampled using normalized coordinates
    /// (so not `TextureRectangle` textures).`</note>`
    ///
    /// The top left texture coordinate for layer 0 of any pipeline will be
    /// (tex_coords[0], tex_coords[1]) and the bottom right coordinate will
    /// be (tex_coords[2], tex_coords[3]). The coordinates for layer 1
    /// would be (tex_coords[4], tex_coords[5]) (tex_coords[6],
    /// tex_coords[7]) and so on...
    ///
    /// The given texture coordinates should always be normalized such that
    /// (0, 0) corresponds to the top left and (1, 1) corresponds to the
    /// bottom right. To map an entire texture across the rectangle pass
    /// in tex_coords[0]=0, tex_coords[1]=0, tex_coords[2]=1,
    /// tex_coords[3]=1.
    ///
    /// `<note>`Even if you have associated a `TextureRectangle` texture
    /// which normally implies working with non-normalized texture
    /// coordinates this api should still be passed normalized texture
    /// coordinates.`</note>`
    ///
    /// The first pair of coordinates are for the first layer (with the
    /// smallest layer index) and if you supply less texture coordinates
    /// than there are layers in the current source material then default
    /// texture coordinates (0.0, 0.0, 1.0, 1.0) are generated.
    /// ## `pipeline`
    /// A `Pipeline` state object
    /// ## `x_1`
    /// x coordinate upper left on screen.
    /// ## `y_1`
    /// y coordinate upper left on screen.
    /// ## `x_2`
    /// x coordinate lower right on screen.
    /// ## `y_2`
    /// y coordinate lower right on screen.
    /// ## `tex_coords`
    /// An array containing groups of
    ///  4 float values: [s_1, t_1, s_2, t_2] that are interpreted as two texture
    ///  coordinates; one for the top left texel, and one for the bottom right
    ///  texel. Each value should be between 0.0 and 1.0, where the coordinate
    ///  (0.0, 0.0) represents the top left of the texture, and (1.0, 1.0) the
    ///  bottom right.
    /// ## `tex_coords_len`
    /// The length of the `tex_coords` array. (For one layer
    ///  and one group of texture coordinates, this would be 4)
    fn draw_multitextured_rectangle(
        &self,
        pipeline: &Pipeline,
        x_1: f32,
        y_1: f32,
        x_2: f32,
        y_2: f32,
        tex_coords: &[f32],
    );

    /// Draws a rectangle to `self` with the given `pipeline` state
    /// and with the top left corner positioned at (`x_1`, `y_1`) and the
    /// bottom right corner positioned at (`x_2`, `y_2`).
    ///
    /// `<note>`The position is the position before the rectangle has been
    /// transformed by the model-view matrix and the projection
    /// matrix.`</note>`
    ///
    /// `<note>`If you want to describe a rectangle with a texture mapped on
    /// it then you can use
    /// `Framebuffer::draw_textured_rectangle`.`</note>`
    /// ## `pipeline`
    /// A `Pipeline` state object
    /// ## `x_1`
    /// X coordinate of the top-left corner
    /// ## `y_1`
    /// Y coordinate of the top-left corner
    /// ## `x_2`
    /// X coordinate of the bottom-right corner
    /// ## `y_2`
    /// Y coordinate of the bottom-right corner
    fn draw_rectangle(&self, pipeline: &Pipeline, x_1: f32, y_1: f32, x_2: f32, y_2: f32);

    //fn draw_rectangles(&self, pipeline: &Pipeline, coordinates: &[f32], n_rectangles: u32);

    /// Draws a textured rectangle to `self` using the given
    /// `pipeline` state with the top left corner positioned at (`x_1`, `y_1`)
    /// and the bottom right corner positioned at (`x_2`, `y_2`). The top
    /// left corner will have texture coordinates of (`s_1`, `t_1`) and the
    /// bottom right corner will have texture coordinates of (`s_2`, `t_2`).
    ///
    /// `<note>`The position is the position before the rectangle has been
    /// transformed by the model-view matrix and the projection
    /// matrix.`</note>`
    ///
    /// This is a high level drawing api that can handle any kind of
    /// `MetaTexture` texture such as `Texture2DSliced` textures
    /// which may internally be comprised of multiple low-level textures.
    /// This is unlike low-level drawing apis such as `Primitive::draw`
    /// which only support low level texture types that are directly
    /// supported by GPUs such as `Texture2D`.
    ///
    /// `<note>`The given texture coordinates will only be used for the first
    /// texture layer of the pipeline and if your pipeline has more than
    /// one layer then all other layers will have default texture
    /// coordinates of `s_1`=0.0 `t_1`=0.0 `s_2`=1.0 `t_2`=1.0 `</note>`
    ///
    /// The given texture coordinates should always be normalized such that
    /// (0, 0) corresponds to the top left and (1, 1) corresponds to the
    /// bottom right. To map an entire texture across the rectangle pass
    /// in `s_1`=0, `t_1`=0, `s_2`=1, `t_2`=1.
    ///
    /// `<note>`Even if you have associated a `TextureRectangle` texture
    /// with one of your `pipeline` layers which normally implies working
    /// with non-normalized texture coordinates this api should still be
    /// passed normalized texture coordinates.`</note>`
    /// ## `pipeline`
    /// A `Pipeline` state object
    /// ## `x_1`
    /// x coordinate upper left on screen.
    /// ## `y_1`
    /// y coordinate upper left on screen.
    /// ## `x_2`
    /// x coordinate lower right on screen.
    /// ## `y_2`
    /// y coordinate lower right on screen.
    /// ## `s_1`
    /// S texture coordinate of the top-left coorner
    /// ## `t_1`
    /// T texture coordinate of the top-left coorner
    /// ## `s_2`
    /// S texture coordinate of the bottom-right coorner
    /// ## `t_2`
    /// T texture coordinate of the bottom-right coorner
    fn draw_textured_rectangle(
        &self,
        pipeline: &Pipeline,
        x_1: f32,
        y_1: f32,
        x_2: f32,
        y_2: f32,
        s_1: f32,
        t_1: f32,
        s_2: f32,
        t_2: f32,
    );

    //fn draw_textured_rectangles(&self, pipeline: &Pipeline, coordinates: &[f32], n_rectangles: u32);

    /// This blocks the CPU until all pending rendering associated with the
    /// specified framebuffer has completed. It's very rare that developers should
    /// ever need this level of synchronization with the GPU and should never be
    /// used unless you clearly understand why you need to explicitly force
    /// synchronization.
    ///
    /// One example might be for benchmarking purposes to be sure timing
    /// measurements reflect the time that the GPU is busy for not just the time it
    /// takes to queue rendering commands.
    fn finish(&self);

    /// Replaces the current projection matrix with a perspective matrix
    /// for a given viewing frustum defined by 4 side clip planes that
    /// all cross through the origin and 2 near and far clip planes.
    /// ## `left`
    /// X position of the left clipping plane where it
    ///  intersects the near clipping plane
    /// ## `right`
    /// X position of the right clipping plane where it
    ///  intersects the near clipping plane
    /// ## `bottom`
    /// Y position of the bottom clipping plane where it
    ///  intersects the near clipping plane
    /// ## `top`
    /// Y position of the top clipping plane where it intersects
    ///  the near clipping plane
    /// ## `z_near`
    /// The distance to the near clipping plane (Must be positive)
    /// ## `z_far`
    /// The distance to the far clipping plane (Must be positive)
    fn frustum(&self, left: f32, right: f32, bottom: f32, top: f32, z_near: f32, z_far: f32);

    /// Retrieves the number of alpha bits of `self`
    ///
    /// # Returns
    ///
    /// the number of bits
    fn get_alpha_bits(&self) -> i32;

    /// Retrieves the number of blue bits of `self`
    ///
    /// # Returns
    ///
    /// the number of bits
    fn get_blue_bits(&self) -> i32;

    /// Gets the current `ColorMask` of which channels would be written to the
    /// current framebuffer. Each bit set in the mask means that the
    /// corresponding color would be written.
    ///
    /// # Returns
    ///
    /// A `ColorMask`
    fn get_color_mask(&self) -> ColorMask;

    /// Can be used to query the `Context` a given `self` was
    /// instantiated within. This is the `Context` that was passed to
    /// `Onscreen::new` for example.
    ///
    /// # Returns
    ///
    /// The `Context` that the given
    ///  `self` was instantiated within.
    fn get_context(&self) -> Option<Context>;

    /// Retrieves the number of depth bits of `self`
    ///
    ///
    /// # Returns
    ///
    /// the number of bits
    fn get_depth_bits(&self) -> i32;

    /// Retrieves the depth buffer of `self` as a `Texture`. You need to
    /// call framebuffer_get_depth_texture(fb, TRUE); before using this
    /// function.
    ///
    /// `<note>`Calling this function implicitely allocates the framebuffer.`</note>`
    /// `<note>`The texture returned stays valid as long as the framebuffer stays
    /// valid.`</note>`
    ///
    /// # Returns
    ///
    /// the depth texture
    fn get_depth_texture(&self) -> Option<Texture>;

    /// Queries whether texture based depth buffer has been enabled via
    /// `Framebuffer::set_depth_texture_enabled`.
    ///
    /// # Returns
    ///
    /// `true` if a depth texture has been enabled, else
    ///  `false`.
    fn get_depth_texture_enabled(&self) -> bool;

    /// Queries whether depth buffer writing is enabled for `self`. This
    /// can be controlled via `Framebuffer::set_depth_write_enabled`.
    ///
    /// # Returns
    ///
    /// `true` if depth writing is enabled or `false` if not.
    fn get_depth_write_enabled(&self) -> bool;

    /// Returns whether dithering has been requested for the given `self`.
    /// See `Framebuffer::set_dither_enabled` for more details about dithering.
    ///
    /// `<note>`This may return `true` even when the underlying `self`
    /// display pipeline does not support dithering. This value only represents
    /// the user's request for dithering.`</note>`
    ///
    /// # Returns
    ///
    /// `true` if dithering has been requested or `false` if not.
    fn get_dither_enabled(&self) -> bool;

    /// Retrieves the number of green bits of `self`
    ///
    /// # Returns
    ///
    /// the number of bits
    fn get_green_bits(&self) -> i32;

    /// Queries the current height of the given `self`.
    ///
    /// # Returns
    ///
    /// The height of `self`.
    fn get_height(&self) -> i32;

    fn get_is_stereo(&self) -> bool;

    /// Stores the current model-view matrix in `matrix`.
    /// ## `matrix`
    /// return location for the model-view matrix
    fn get_modelview_matrix(&self) -> Matrix;

    /// Stores the current projection matrix in `matrix`.
    /// ## `matrix`
    /// return location for the projection matrix
    fn get_projection_matrix(&self) -> Matrix;

    /// Retrieves the number of red bits of `self`
    ///
    /// # Returns
    ///
    /// the number of bits
    fn get_red_bits(&self) -> i32;

    /// Gets the number of points that are sampled per-pixel when
    /// rasterizing geometry. Usually by default this will return 0 which
    /// means that single-sample not multisample rendering has been chosen.
    /// When using a GPU supporting multisample rendering it's possible to
    /// increase the number of samples per pixel using
    /// `Framebuffer::set_samples_per_pixel`.
    ///
    /// Calling `Framebuffer::get_samples_per_pixel` before the
    /// framebuffer has been allocated will simply return the value set
    /// using `Framebuffer::set_samples_per_pixel`. After the
    /// framebuffer has been allocated the value will reflect the actual
    /// number of samples that will be made by the GPU.
    ///
    /// # Returns
    ///
    /// The number of point samples made per pixel when
    ///  rasterizing geometry or 0 if single-sample rendering
    ///  has been chosen.
    fn get_samples_per_pixel(&self) -> i32;

    /// Gets the current `StereoMode`, which defines which stereo buffers
    /// should be drawn to. See `Framebuffer::set_stereo_mode`.
    ///
    /// # Returns
    ///
    /// A `StereoMode`
    fn get_stereo_mode(&self) -> StereoMode;

    //fn get_viewport4fv(&self, viewport: /*Unimplemented*/FixedArray TypeId { ns_id: 0, id: 20 }; 4);

    /// Queries the height of the viewport as set using `Framebuffer::set_viewport`
    /// or the default value which is the height of the framebuffer.
    ///
    /// # Returns
    ///
    /// The height of the viewport.
    fn get_viewport_height(&self) -> f32;

    /// Queries the width of the viewport as set using `Framebuffer::set_viewport`
    /// or the default value which is the width of the framebuffer.
    ///
    /// # Returns
    ///
    /// The width of the viewport.
    fn get_viewport_width(&self) -> f32;

    /// Queries the x coordinate of the viewport origin as set using `Framebuffer::set_viewport`
    /// or the default value which is 0.
    ///
    /// # Returns
    ///
    /// The x coordinate of the viewport origin.
    fn get_viewport_x(&self) -> f32;

    /// Queries the y coordinate of the viewport origin as set using `Framebuffer::set_viewport`
    /// or the default value which is 0.
    ///
    /// # Returns
    ///
    /// The y coordinate of the viewport origin.
    fn get_viewport_y(&self) -> f32;

    /// Queries the current width of the given `self`.
    ///
    /// # Returns
    ///
    /// The width of `self`.
    fn get_width(&self) -> i32;

    /// Resets the current model-view matrix to the identity matrix.
    fn identity_matrix(&self);

    /// Replaces the current projection matrix with an orthographic projection
    /// matrix.
    /// ## `x_1`
    /// The x coordinate for the first vertical clipping plane
    /// ## `y_1`
    /// The y coordinate for the first horizontal clipping plane
    /// ## `x_2`
    /// The x coordinate for the second vertical clipping plane
    /// ## `y_2`
    /// The y coordinate for the second horizontal clipping plane
    /// ## `near`
    /// The `<emphasis>`distance`</emphasis>` to the near clipping
    ///  plane (will be `<emphasis>`negative`</emphasis>` if the plane is
    ///  behind the viewer)
    /// ## `far`
    /// The `<emphasis>`distance`</emphasis>` to the far clipping
    ///  plane (will be `<emphasis>`negative`</emphasis>` if the plane is
    ///  behind the viewer)
    fn orthographic(&self, x_1: f32, y_1: f32, x_2: f32, y_2: f32, near: f32, far: f32);

    /// Replaces the current projection matrix with a perspective matrix
    /// based on the provided values.
    ///
    /// `<note>`You should be careful not to have to great a `z_far` / `z_near`
    /// ratio since that will reduce the effectiveness of depth testing
    /// since there wont be enough precision to identify the depth of
    /// objects near to each other.`</note>`
    /// ## `fov_y`
    /// Vertical field of view angle in degrees.
    /// ## `aspect`
    /// The (width over height) aspect ratio for display
    /// ## `z_near`
    /// The distance to the near clipping plane (Must be positive,
    ///  and must not be 0)
    /// ## `z_far`
    /// The distance to the far clipping plane (Must be positive)
    fn perspective(&self, fov_y: f32, aspect: f32, z_near: f32, z_far: f32);

    /// Reverts the clipping region to the state before the last call to
    /// `Framebuffer::push_scissor_clip`, `Framebuffer::push_rectangle_clip`
    /// `framebuffer_push_path_clip`, or `Framebuffer::push_primitive_clip`.
    fn pop_clip(&self);

    /// Restores the model-view matrix on the top of the matrix stack.
    fn pop_matrix(&self);

    /// Copies the current model-view matrix onto the matrix stack. The matrix
    /// can later be restored with `Framebuffer::pop_matrix`.
    fn push_matrix(&self);

    /// Sets a new clipping area using a 2D shaped described with a
    /// `Primitive`. The shape must not contain self overlapping
    /// geometry and must lie on a single 2D plane. A bounding box of the
    /// 2D shape in local coordinates (the same coordinates used to
    /// describe the shape) must be given. It is acceptable for the bounds
    /// to be larger than the true bounds but behaviour is undefined if the
    /// bounds are smaller than the true bounds.
    ///
    /// The primitive is transformed by the current model-view matrix and
    /// the silhouette is intersected with the previous clipping area. To
    /// restore the previous clipping area, call
    /// `Framebuffer::pop_clip`.
    /// ## `primitive`
    /// A `Primitive` describing a flat 2D shape
    /// ## `bounds_x1`
    /// x coordinate for the top-left corner of the primitives
    ///  bounds
    /// ## `bounds_y1`
    /// y coordinate for the top-left corner of the primitives
    ///  bounds
    /// ## `bounds_x2`
    /// x coordinate for the bottom-right corner of the
    ///  primitives bounds.
    /// ## `bounds_y2`
    /// y coordinate for the bottom-right corner of the
    ///  primitives bounds.
    fn push_primitive_clip(
        &self,
        primitive: &Primitive,
        bounds_x1: f32,
        bounds_y1: f32,
        bounds_x2: f32,
        bounds_y2: f32,
    );

    /// Specifies a modelview transformed rectangular clipping area for all
    /// subsequent drawing operations. Any drawing commands that extend
    /// outside the rectangle will be clipped so that only the portion
    /// inside the rectangle will be displayed. The rectangle dimensions
    /// are transformed by the current model-view matrix.
    ///
    /// The rectangle is intersected with the current clip region. To undo
    /// the effect of this function, call `Framebuffer::pop_clip`.
    /// ## `x_1`
    /// x coordinate for top left corner of the clip rectangle
    /// ## `y_1`
    /// y coordinate for top left corner of the clip rectangle
    /// ## `x_2`
    /// x coordinate for bottom right corner of the clip rectangle
    /// ## `y_2`
    /// y coordinate for bottom right corner of the clip rectangle
    fn push_rectangle_clip(&self, x_1: f32, y_1: f32, x_2: f32, y_2: f32);

    /// Specifies a rectangular clipping area for all subsequent drawing
    /// operations. Any drawing commands that extend outside the rectangle
    /// will be clipped so that only the portion inside the rectangle will
    /// be displayed. The rectangle dimensions are not transformed by the
    /// current model-view matrix.
    ///
    /// The rectangle is intersected with the current clip region. To undo
    /// the effect of this function, call `Framebuffer::pop_clip`.
    /// ## `x`
    /// left edge of the clip rectangle in window coordinates
    /// ## `y`
    /// top edge of the clip rectangle in window coordinates
    /// ## `width`
    /// width of the clip rectangle
    /// ## `height`
    /// height of the clip rectangle
    fn push_scissor_clip(&self, x: i32, y: i32, width: i32, height: i32);

    /// This is a convenience wrapper around
    /// `Framebuffer::read_pixels_into_bitmap` which allocates a
    /// temporary `Bitmap` to read pixel data directly into the given
    /// buffer. The rowstride of the buffer is assumed to be the width of
    /// the region times the bytes per pixel of the format. The source for
    /// the data is always taken from the color buffer. If you want to use
    /// any other rowstride or source, please use the
    /// `Framebuffer::read_pixels_into_bitmap` function directly.
    ///
    /// The implementation of the function looks like this:
    ///
    ///
    /// ```text
    /// bitmap = bitmap_new_for_data (context,
    ///                                    width, height,
    ///                                    format,
    ///                                    /<!-- -->* rowstride *<!-- -->/
    ///                                    bpp * width,
    ///                                    pixels);
    /// framebuffer_read_pixels_into_bitmap (framebuffer,
    ///                                           x, y,
    ///                                           READ_PIXELS_COLOR_BUFFER,
    ///                                           bitmap);
    /// object_unref (bitmap);
    /// ```
    /// ## `x`
    /// The x position to read from
    /// ## `y`
    /// The y position to read from
    /// ## `width`
    /// The width of the region of rectangles to read
    /// ## `height`
    /// The height of the region of rectangles to read
    /// ## `format`
    /// The pixel format to store the data in
    /// ## `pixels`
    /// The address of the buffer to store the data in
    ///
    /// # Returns
    ///
    /// `true` if the read succeeded or `false` otherwise.
    fn read_pixels(
        &self,
        x: i32,
        y: i32,
        width: i32,
        height: i32,
        format: PixelFormat,
        pixels: &[u8],
    ) -> bool;

    /// This reads a rectangle of pixels from the given framebuffer where
    /// position (0, 0) is the top left. The pixel at (x, y) is the first
    /// read, and a rectangle of pixels with the same size as the bitmap is
    /// read right and downwards from that point.
    ///
    /// Currently Cogl assumes that the framebuffer is in a premultiplied
    /// format so if the format of `bitmap` is non-premultiplied it will
    /// convert it. To read the pixel values without any conversion you
    /// should either specify a format that doesn't use an alpha channel or
    /// use one of the formats ending in PRE.
    /// ## `x`
    /// The x position to read from
    /// ## `y`
    /// The y position to read from
    /// ## `source`
    /// Identifies which auxillary buffer you want to read
    ///  (only READ_PIXELS_COLOR_BUFFER supported currently)
    /// ## `bitmap`
    /// The bitmap to store the results in.
    ///
    /// # Returns
    ///
    /// `true` if the read succeeded or `false` otherwise. The
    ///  function is only likely to fail if the bitmap points to a pixel
    ///  buffer and it could not be mapped.
    fn read_pixels_into_bitmap(
        &self,
        x: i32,
        y: i32,
        source: ReadPixelsFlags,
        bitmap: &Bitmap,
    ) -> bool;

    /// When point sample rendering (also known as multisample rendering)
    /// has been enabled via `Framebuffer::set_samples_per_pixel`
    /// then you can optionally call this function (or
    /// `Framebuffer::resolve_samples_region`) to explicitly resolve
    /// the point samples into values for the final color buffer.
    ///
    /// Some GPUs will implicitly resolve the point samples during
    /// rendering and so this function is effectively a nop, but with other
    /// architectures it is desirable to defer the resolve step until the
    /// end of the frame.
    ///
    /// Since Cogl will automatically ensure samples are resolved if the
    /// target color buffer is used as a source this API only needs to be
    /// used if explicit control is desired - perhaps because you want to
    /// ensure that the resolve is completed in advance to avoid later
    /// having to wait for the resolve to complete.
    ///
    /// If you are performing incremental updates to a framebuffer you
    /// should consider using `Framebuffer::resolve_samples_region`
    /// instead to avoid resolving redundant pixels.
    fn resolve_samples(&self);

    /// When point sample rendering (also known as multisample rendering)
    /// has been enabled via `Framebuffer::set_samples_per_pixel`
    /// then you can optionally call this function (or
    /// `Framebuffer::resolve_samples`) to explicitly resolve the point
    /// samples into values for the final color buffer.
    ///
    /// Some GPUs will implicitly resolve the point samples during
    /// rendering and so this function is effectively a nop, but with other
    /// architectures it is desirable to defer the resolve step until the
    /// end of the frame.
    ///
    /// Use of this API is recommended if incremental, small updates to
    /// a framebuffer are being made because by default Cogl will
    /// implicitly resolve all the point samples of the framebuffer which
    /// can result in redundant work if only a small number of samples have
    /// changed.
    ///
    /// Because some GPUs implicitly resolve point samples this function
    /// only guarantees that at-least the region specified will be resolved
    /// and if you have rendered to a larger region then it's possible that
    /// other samples may be implicitly resolved.
    /// ## `x`
    /// top-left x coordinate of region to resolve
    /// ## `y`
    /// top-left y coordinate of region to resolve
    /// ## `width`
    /// width of region to resolve
    /// ## `height`
    /// height of region to resolve
    fn resolve_samples_region(&self, x: i32, y: i32, width: i32, height: i32);

    /// Multiplies the current model-view matrix by one that rotates the
    /// model around the axis-vector specified by `x`, `y` and `z`. The
    /// rotation follows the right-hand thumb rule so for example rotating
    /// by 10 degrees about the axis-vector (0, 0, 1) causes a small
    /// counter-clockwise rotation.
    /// ## `angle`
    /// Angle in degrees to rotate.
    /// ## `x`
    /// X-component of vertex to rotate around.
    /// ## `y`
    /// Y-component of vertex to rotate around.
    /// ## `z`
    /// Z-component of vertex to rotate around.
    fn rotate(&self, angle: f32, x: f32, y: f32, z: f32);

    /// Multiplies the current model-view matrix by one that rotates
    /// according to the rotation described by `euler`.
    ///
    /// ## `euler`
    /// A `Euler`
    fn rotate_euler(&self, euler: &Euler);

    /// Multiplies the current model-view matrix by one that rotates
    /// according to the rotation described by `quaternion`.
    ///
    /// ## `quaternion`
    /// A `Quaternion`
    fn rotate_quaternion(&self, quaternion: &Quaternion);

    /// Multiplies the current model-view matrix by one that scales the x,
    /// y and z axes by the given values.
    /// ## `x`
    /// Amount to scale along the x-axis
    /// ## `y`
    /// Amount to scale along the y-axis
    /// ## `z`
    /// Amount to scale along the z-axis
    fn scale(&self, x: f32, y: f32, z: f32);

    /// Defines a bit mask of which color channels should be written to the
    /// given `self`. If a bit is set in `color_mask` that means that
    /// color will be written.
    /// ## `color_mask`
    /// A `ColorMask` of which color channels to write to
    ///  the current framebuffer.
    fn set_color_mask(&self, color_mask: ColorMask);

    /// If `enabled` is `true`, the depth buffer used when rendering to `self`
    /// is available as a texture. You can retrieve the texture with
    /// `Framebuffer::get_depth_texture`.
    ///
    /// `<note>`It's possible that your GPU does not support depth textures. You
    /// should check the `FeatureID::OglFeatureIdDepthTexture` feature before using this
    /// function.`</note>`
    /// `<note>`It's not valid to call this function after the framebuffer has been
    /// allocated as the creation of the depth texture is done at allocation time.
    /// `</note>`
    /// ## `enabled`
    /// TRUE or FALSE
    fn set_depth_texture_enabled(&self, enabled: bool);

    /// Enables or disables depth buffer writing when rendering to `self`.
    /// If depth writing is enabled for both the framebuffer and the rendering
    /// pipeline, and the framebuffer has an associated depth buffer, depth
    /// information will be written to this buffer during rendering.
    ///
    /// Depth buffer writing is enabled by default.
    /// ## `depth_write_enabled`
    /// `true` to enable depth writing or `false` to disable
    fn set_depth_write_enabled(&self, depth_write_enabled: bool);

    /// Enables or disabled dithering if supported by the hardware.
    ///
    /// Dithering is a hardware dependent technique to increase the visible
    /// color resolution beyond what the underlying hardware supports by playing
    /// tricks with the colors placed into the framebuffer to give the illusion
    /// of other colors. (For example this can be compared to half-toning used
    /// by some news papers to show varying levels of grey even though their may
    /// only be black and white are available).
    ///
    /// If the current display pipeline for `self` does not support dithering
    /// then this has no affect.
    ///
    /// Dithering is enabled by default.
    /// ## `dither_enabled`
    /// `true` to enable dithering or `false` to disable
    fn set_dither_enabled(&self, dither_enabled: bool);

    /// Sets `matrix` as the new model-view matrix.
    /// ## `matrix`
    /// the new model-view matrix
    fn set_modelview_matrix(&self, matrix: &Matrix);

    /// Sets `matrix` as the new projection matrix.
    /// ## `matrix`
    /// the new projection matrix
    fn set_projection_matrix(&self, matrix: &Matrix);

    /// Requires that when rendering to `self` then `n` point samples
    /// should be made per pixel which will all contribute to the final
    /// resolved color for that pixel. The idea is that the hardware aims
    /// to get quality similar to what you would get if you rendered
    /// everything twice as big (for 4 samples per pixel) and then scaled
    /// that image back down with filtering. It can effectively remove the
    /// jagged edges of polygons and should be more efficient than if you
    /// were to manually render at a higher resolution and downscale
    /// because the hardware is often able to take some shortcuts. For
    /// example the GPU may only calculate a single texture sample for all
    /// points of a single pixel, and for tile based architectures all the
    /// extra sample data (such as depth and stencil samples) may be
    /// handled on-chip and so avoid increased demand on system memory
    /// bandwidth.
    ///
    /// By default this value is usually set to 0 and that is referred to
    /// as "single-sample" rendering. A value of 1 or greater is referred
    /// to as "multisample" rendering.
    ///
    /// `<note>`There are some semantic differences between single-sample
    /// rendering and multisampling with just 1 point sample such as it
    /// being redundant to use the `Framebuffer::resolve_samples` and
    /// `Framebuffer::resolve_samples_region` apis with single-sample
    /// rendering.`</note>`
    ///
    /// `<note>`It's recommended that
    /// `Framebuffer::resolve_samples_region` be explicitly used at the
    /// end of rendering to a point sample buffer to minimize the number of
    /// samples that get resolved. By default Cogl will implicitly resolve
    /// all framebuffer samples but if only a small region of a
    /// framebuffer has changed this can lead to redundant work being
    /// done.`</note>`
    /// ## `samples_per_pixel`
    /// The minimum number of samples per pixel
    fn set_samples_per_pixel(&self, samples_per_pixel: i32);

    /// Sets which stereo buffers should be drawn to. The default
    /// is `StereoMode::Both`, which means that both the left and
    /// right buffers will be affected by drawing. For this to have
    /// an effect, the display system must support stereo drawables,
    /// and the framebuffer must have been created with stereo
    /// enabled. (See `OnscreenTemplate::set_stereo_enabled`,
    /// `Framebuffer::get_is_stereo`.)
    /// ## `stereo_mode`
    /// A `StereoMode` specifying which stereo buffers
    ///  should be drawn tow.
    fn set_stereo_mode(&self, stereo_mode: StereoMode);

    /// Defines a scale and offset for everything rendered relative to the
    /// top-left of the destination framebuffer.
    ///
    /// By default the viewport has an origin of (0,0) and width and height
    /// that match the framebuffer's size. Assuming a default projection and
    /// modelview matrix then you could translate the contents of a window
    /// down and right by leaving the viewport size unchanged by moving the
    /// offset to (10,10). The viewport coordinates are measured in pixels.
    /// If you left the x and y origin as (0,0) you could scale the windows
    /// contents down by specify and width and height that's half the real
    /// size of the framebuffer.
    ///
    /// `<note>`Although the function takes floating point arguments, existing
    /// drivers only allow the use of integer values. In the future floating
    /// point values will be exposed via a checkable feature.`</note>`
    /// ## `x`
    /// The top-left x coordinate of the viewport origin (only integers
    ///  supported currently)
    /// ## `y`
    /// The top-left y coordinate of the viewport origin (only integers
    ///  supported currently)
    /// ## `width`
    /// The width of the viewport (only integers supported currently)
    /// ## `height`
    /// The height of the viewport (only integers supported currently)
    fn set_viewport(&self, x: f32, y: f32, width: f32, height: f32);

    /// Multiplies the current model-view matrix by the given matrix.
    /// ## `matrix`
    /// the matrix to multiply with the current model-view
    fn transform(&self, matrix: &Matrix);

    /// Multiplies the current model-view matrix by one that translates the
    /// model along all three axes according to the given values.
    /// ## `x`
    /// Distance to translate along the x-axis
    /// ## `y`
    /// Distance to translate along the y-axis
    /// ## `z`
    /// Distance to translate along the z-axis
    fn translate(&self, x: f32, y: f32, z: f32);
}

impl<O: IsA<Framebuffer>> FramebufferExt for O {
    fn add_fence_callback<P: Fn(&Fence) + 'static>(&self, callback: P) -> Option<FenceClosure> {
        let callback_data: Box_<P> = Box_::new(callback);
        unsafe extern "C" fn callback_func<P: Fn(&Fence) + 'static>(
            fence: *mut ffi::CoglFence,
            user_data: glib_sys::gpointer,
        ) {
            let fence = from_glib_borrow(fence);
            let callback: &P = &*(user_data as *mut _);
            (*callback)(&fence);
        }
        let callback = Some(callback_func::<P> as _);
        let super_callback0: Box_<P> = callback_data;
        unsafe {
            from_glib_none(ffi::cogl_framebuffer_add_fence_callback(
                self.as_ref().to_glib_none().0,
                callback,
                Box_::into_raw(super_callback0) as *mut _,
            ))
        }
    }

    fn allocate(&self) -> Result<bool, glib::Error> {
        unsafe {
            let mut error = ptr::null_mut();
            let ret = ffi::cogl_framebuffer_allocate(self.as_ref().to_glib_none().0, &mut error);
            if error.is_null() {
                Ok(ret == crate::TRUE)
            } else {
                Err(from_glib_full(error))
            }
        }
    }

    fn cancel_fence_callback(&self, closure: &mut FenceClosure) {
        unsafe {
            ffi::cogl_framebuffer_cancel_fence_callback(
                self.as_ref().to_glib_none().0,
                closure.to_glib_none_mut().0,
            );
        }
    }

    fn clear(&self, buffers: libc::c_ulong, color: &Color) {
        unsafe {
            ffi::cogl_framebuffer_clear(
                self.as_ref().to_glib_none().0,
                buffers,
                color.to_glib_none().0,
            );
        }
    }

    fn clear4f(&self, buffers: libc::c_ulong, red: f32, green: f32, blue: f32, alpha: f32) {
        unsafe {
            ffi::cogl_framebuffer_clear4f(
                self.as_ref().to_glib_none().0,
                buffers,
                red,
                green,
                blue,
                alpha,
            );
        }
    }

    fn discard_buffers(&self, buffers: libc::c_ulong) {
        unsafe {
            ffi::cogl_framebuffer_discard_buffers(self.as_ref().to_glib_none().0, buffers);
        }
    }

    fn draw_multitextured_rectangle(
        &self,
        pipeline: &Pipeline,
        x_1: f32,
        y_1: f32,
        x_2: f32,
        y_2: f32,
        tex_coords: &[f32],
    ) {
        let tex_coords_len = tex_coords.len() as i32;
        unsafe {
            ffi::cogl_framebuffer_draw_multitextured_rectangle(
                self.as_ref().to_glib_none().0,
                pipeline.to_glib_none().0,
                x_1,
                y_1,
                x_2,
                y_2,
                tex_coords.to_glib_none().0,
                tex_coords_len,
            );
        }
    }

    fn draw_rectangle(&self, pipeline: &Pipeline, x_1: f32, y_1: f32, x_2: f32, y_2: f32) {
        unsafe {
            ffi::cogl_framebuffer_draw_rectangle(
                self.as_ref().to_glib_none().0,
                pipeline.to_glib_none().0,
                x_1,
                y_1,
                x_2,
                y_2,
            );
        }
    }

    //fn draw_rectangles(&self, pipeline: &Pipeline, coordinates: &[f32], n_rectangles: u32) {
    //    unsafe { TODO: call cogl_sys:cogl_framebuffer_draw_rectangles() }
    //}

    fn draw_textured_rectangle(
        &self,
        pipeline: &Pipeline,
        x_1: f32,
        y_1: f32,
        x_2: f32,
        y_2: f32,
        s_1: f32,
        t_1: f32,
        s_2: f32,
        t_2: f32,
    ) {
        unsafe {
            ffi::cogl_framebuffer_draw_textured_rectangle(
                self.as_ref().to_glib_none().0,
                pipeline.to_glib_none().0,
                x_1,
                y_1,
                x_2,
                y_2,
                s_1,
                t_1,
                s_2,
                t_2,
            );
        }
    }

    //fn draw_textured_rectangles(&self, pipeline: &Pipeline, coordinates: &[f32], n_rectangles: u32) {
    //    unsafe { TODO: call cogl_sys:cogl_framebuffer_draw_textured_rectangles() }
    //}

    fn finish(&self) {
        unsafe {
            ffi::cogl_framebuffer_finish(self.as_ref().to_glib_none().0);
        }
    }

    fn frustum(&self, left: f32, right: f32, bottom: f32, top: f32, z_near: f32, z_far: f32) {
        unsafe {
            ffi::cogl_framebuffer_frustum(
                self.as_ref().to_glib_none().0,
                left,
                right,
                bottom,
                top,
                z_near,
                z_far,
            );
        }
    }

    fn get_alpha_bits(&self) -> i32 {
        unsafe { ffi::cogl_framebuffer_get_alpha_bits(self.as_ref().to_glib_none().0) }
    }

    fn get_blue_bits(&self) -> i32 {
        unsafe { ffi::cogl_framebuffer_get_blue_bits(self.as_ref().to_glib_none().0) }
    }

    fn get_color_mask(&self) -> ColorMask {
        unsafe {
            from_glib(ffi::cogl_framebuffer_get_color_mask(
                self.as_ref().to_glib_none().0,
            ))
        }
    }

    fn get_context(&self) -> Option<Context> {
        unsafe {
            from_glib_none(ffi::cogl_framebuffer_get_context(
                self.as_ref().to_glib_none().0,
            ))
        }
    }

    fn get_depth_bits(&self) -> i32 {
        unsafe { ffi::cogl_framebuffer_get_depth_bits(self.as_ref().to_glib_none().0) }
    }

    fn get_depth_texture(&self) -> Option<Texture> {
        unsafe {
            from_glib_none(ffi::cogl_framebuffer_get_depth_texture(
                self.as_ref().to_glib_none().0,
            ))
        }
    }

    fn get_depth_texture_enabled(&self) -> bool {
        unsafe {
            ffi::cogl_framebuffer_get_depth_texture_enabled(self.as_ref().to_glib_none().0)
                == crate::TRUE
        }
    }

    fn get_depth_write_enabled(&self) -> bool {
        unsafe {
            ffi::cogl_framebuffer_get_depth_write_enabled(self.as_ref().to_glib_none().0)
                == crate::TRUE
        }
    }

    fn get_dither_enabled(&self) -> bool {
        unsafe {
            ffi::cogl_framebuffer_get_dither_enabled(self.as_ref().to_glib_none().0) == crate::TRUE
        }
    }

    fn get_green_bits(&self) -> i32 {
        unsafe { ffi::cogl_framebuffer_get_green_bits(self.as_ref().to_glib_none().0) }
    }

    fn get_height(&self) -> i32 {
        unsafe { ffi::cogl_framebuffer_get_height(self.as_ref().to_glib_none().0) }
    }

    fn get_is_stereo(&self) -> bool {
        unsafe {
            ffi::cogl_framebuffer_get_is_stereo(self.as_ref().to_glib_none().0) == crate::TRUE
        }
    }

    fn get_modelview_matrix(&self) -> Matrix {
        unsafe {
            let mut matrix = Matrix::uninitialized();
            ffi::cogl_framebuffer_get_modelview_matrix(
                self.as_ref().to_glib_none().0,
                matrix.to_glib_none_mut().0,
            );
            matrix
        }
    }

    fn get_projection_matrix(&self) -> Matrix {
        unsafe {
            let mut matrix = Matrix::uninitialized();
            ffi::cogl_framebuffer_get_projection_matrix(
                self.as_ref().to_glib_none().0,
                matrix.to_glib_none_mut().0,
            );
            matrix
        }
    }

    fn get_red_bits(&self) -> i32 {
        unsafe { ffi::cogl_framebuffer_get_red_bits(self.as_ref().to_glib_none().0) }
    }

    fn get_samples_per_pixel(&self) -> i32 {
        unsafe { ffi::cogl_framebuffer_get_samples_per_pixel(self.as_ref().to_glib_none().0) }
    }

    fn get_stereo_mode(&self) -> StereoMode {
        unsafe {
            from_glib(ffi::cogl_framebuffer_get_stereo_mode(
                self.as_ref().to_glib_none().0,
            ))
        }
    }

    //fn get_viewport4fv(&self, viewport: /*Unimplemented*/FixedArray TypeId { ns_id: 0, id: 20 }; 4) {
    //    unsafe { TODO: call cogl_sys:cogl_framebuffer_get_viewport4fv() }
    //}

    fn get_viewport_height(&self) -> f32 {
        unsafe { ffi::cogl_framebuffer_get_viewport_height(self.as_ref().to_glib_none().0) }
    }

    fn get_viewport_width(&self) -> f32 {
        unsafe { ffi::cogl_framebuffer_get_viewport_width(self.as_ref().to_glib_none().0) }
    }

    fn get_viewport_x(&self) -> f32 {
        unsafe { ffi::cogl_framebuffer_get_viewport_x(self.as_ref().to_glib_none().0) }
    }

    fn get_viewport_y(&self) -> f32 {
        unsafe { ffi::cogl_framebuffer_get_viewport_y(self.as_ref().to_glib_none().0) }
    }

    fn get_width(&self) -> i32 {
        unsafe { ffi::cogl_framebuffer_get_width(self.as_ref().to_glib_none().0) }
    }

    fn identity_matrix(&self) {
        unsafe {
            ffi::cogl_framebuffer_identity_matrix(self.as_ref().to_glib_none().0);
        }
    }

    fn orthographic(&self, x_1: f32, y_1: f32, x_2: f32, y_2: f32, near: f32, far: f32) {
        unsafe {
            ffi::cogl_framebuffer_orthographic(
                self.as_ref().to_glib_none().0,
                x_1,
                y_1,
                x_2,
                y_2,
                near,
                far,
            );
        }
    }

    fn perspective(&self, fov_y: f32, aspect: f32, z_near: f32, z_far: f32) {
        unsafe {
            ffi::cogl_framebuffer_perspective(
                self.as_ref().to_glib_none().0,
                fov_y,
                aspect,
                z_near,
                z_far,
            );
        }
    }

    fn pop_clip(&self) {
        unsafe {
            ffi::cogl_framebuffer_pop_clip(self.as_ref().to_glib_none().0);
        }
    }

    fn pop_matrix(&self) {
        unsafe {
            ffi::cogl_framebuffer_pop_matrix(self.as_ref().to_glib_none().0);
        }
    }

    fn push_matrix(&self) {
        unsafe {
            ffi::cogl_framebuffer_push_matrix(self.as_ref().to_glib_none().0);
        }
    }

    fn push_primitive_clip(
        &self,
        primitive: &Primitive,
        bounds_x1: f32,
        bounds_y1: f32,
        bounds_x2: f32,
        bounds_y2: f32,
    ) {
        unsafe {
            ffi::cogl_framebuffer_push_primitive_clip(
                self.as_ref().to_glib_none().0,
                primitive.to_glib_none().0,
                bounds_x1,
                bounds_y1,
                bounds_x2,
                bounds_y2,
            );
        }
    }

    fn push_rectangle_clip(&self, x_1: f32, y_1: f32, x_2: f32, y_2: f32) {
        unsafe {
            ffi::cogl_framebuffer_push_rectangle_clip(
                self.as_ref().to_glib_none().0,
                x_1,
                y_1,
                x_2,
                y_2,
            );
        }
    }

    fn push_scissor_clip(&self, x: i32, y: i32, width: i32, height: i32) {
        unsafe {
            ffi::cogl_framebuffer_push_scissor_clip(
                self.as_ref().to_glib_none().0,
                x,
                y,
                width,
                height,
            );
        }
    }

    fn read_pixels(
        &self,
        x: i32,
        y: i32,
        width: i32,
        height: i32,
        format: PixelFormat,
        pixels: &[u8],
    ) -> bool {
        unsafe {
            ffi::cogl_framebuffer_read_pixels(
                self.as_ref().to_glib_none().0,
                x,
                y,
                width,
                height,
                format.to_glib(),
                pixels.to_glib_none().0,
            ) == crate::TRUE
        }
    }

    fn read_pixels_into_bitmap(
        &self,
        x: i32,
        y: i32,
        source: ReadPixelsFlags,
        bitmap: &Bitmap,
    ) -> bool {
        unsafe {
            ffi::cogl_framebuffer_read_pixels_into_bitmap(
                self.as_ref().to_glib_none().0,
                x,
                y,
                source.to_glib(),
                bitmap.to_glib_none().0,
            ) == crate::TRUE
        }
    }

    fn resolve_samples(&self) {
        unsafe {
            ffi::cogl_framebuffer_resolve_samples(self.as_ref().to_glib_none().0);
        }
    }

    fn resolve_samples_region(&self, x: i32, y: i32, width: i32, height: i32) {
        unsafe {
            ffi::cogl_framebuffer_resolve_samples_region(
                self.as_ref().to_glib_none().0,
                x,
                y,
                width,
                height,
            );
        }
    }

    fn rotate(&self, angle: f32, x: f32, y: f32, z: f32) {
        unsafe {
            ffi::cogl_framebuffer_rotate(self.as_ref().to_glib_none().0, angle, x, y, z);
        }
    }

    fn rotate_euler(&self, euler: &Euler) {
        unsafe {
            ffi::cogl_framebuffer_rotate_euler(
                self.as_ref().to_glib_none().0,
                euler.to_glib_none().0,
            );
        }
    }

    fn rotate_quaternion(&self, quaternion: &Quaternion) {
        unsafe {
            ffi::cogl_framebuffer_rotate_quaternion(
                self.as_ref().to_glib_none().0,
                quaternion.to_glib_none().0,
            );
        }
    }

    fn scale(&self, x: f32, y: f32, z: f32) {
        unsafe {
            ffi::cogl_framebuffer_scale(self.as_ref().to_glib_none().0, x, y, z);
        }
    }

    fn set_color_mask(&self, color_mask: ColorMask) {
        unsafe {
            ffi::cogl_framebuffer_set_color_mask(
                self.as_ref().to_glib_none().0,
                color_mask.to_glib(),
            );
        }
    }

    fn set_depth_texture_enabled(&self, enabled: bool) {
        unsafe {
            ffi::cogl_framebuffer_set_depth_texture_enabled(
                self.as_ref().to_glib_none().0,
                enabled as i32,
            );
        }
    }

    fn set_depth_write_enabled(&self, depth_write_enabled: bool) {
        unsafe {
            ffi::cogl_framebuffer_set_depth_write_enabled(
                self.as_ref().to_glib_none().0,
                depth_write_enabled as i32,
            );
        }
    }

    fn set_dither_enabled(&self, dither_enabled: bool) {
        unsafe {
            ffi::cogl_framebuffer_set_dither_enabled(
                self.as_ref().to_glib_none().0,
                dither_enabled as i32,
            );
        }
    }

    fn set_modelview_matrix(&self, matrix: &Matrix) {
        unsafe {
            ffi::cogl_framebuffer_set_modelview_matrix(
                self.as_ref().to_glib_none().0,
                matrix.to_glib_none().0,
            );
        }
    }

    fn set_projection_matrix(&self, matrix: &Matrix) {
        unsafe {
            ffi::cogl_framebuffer_set_projection_matrix(
                self.as_ref().to_glib_none().0,
                matrix.to_glib_none().0,
            );
        }
    }

    fn set_samples_per_pixel(&self, samples_per_pixel: i32) {
        unsafe {
            ffi::cogl_framebuffer_set_samples_per_pixel(
                self.as_ref().to_glib_none().0,
                samples_per_pixel,
            );
        }
    }

    fn set_stereo_mode(&self, stereo_mode: StereoMode) {
        unsafe {
            ffi::cogl_framebuffer_set_stereo_mode(
                self.as_ref().to_glib_none().0,
                stereo_mode.to_glib(),
            );
        }
    }

    fn set_viewport(&self, x: f32, y: f32, width: f32, height: f32) {
        unsafe {
            ffi::cogl_framebuffer_set_viewport(self.as_ref().to_glib_none().0, x, y, width, height);
        }
    }

    fn transform(&self, matrix: &Matrix) {
        unsafe {
            ffi::cogl_framebuffer_transform(
                self.as_ref().to_glib_none().0,
                matrix.to_glib_none().0,
            );
        }
    }

    fn translate(&self, x: f32, y: f32, z: f32) {
        unsafe {
            ffi::cogl_framebuffer_translate(self.as_ref().to_glib_none().0, x, y, z);
        }
    }
}

impl fmt::Display for Framebuffer {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Framebuffer")
    }
}