1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
use crate::{Object, OnscreenTemplate, Renderer};

use glib::translate::*;
use std::{fmt, ptr};

glib_wrapper! {
    pub struct Display(Object<ffi::CoglDisplay, DisplayClass>) @extends Object;

    match fn {
        get_type => || ffi::cogl_display_get_gtype(),
    }
}

impl Display {
    /// Explicitly allocates a new `Display` object to encapsulate the
    /// common state of the display pipeline that applies to the whole
    /// application.
    ///
    /// `<note>`Many applications don't need to explicitly use
    /// `Display::new` and can just jump straight to `Context::new`
    /// and pass a `None` display argument so Cogl will automatically
    /// connect and setup a renderer and display.`</note>`
    ///
    /// A `display` can only be made for a specific choice of renderer which
    /// is why this takes the `renderer` argument.
    ///
    /// A common use for explicitly allocating a display object is to
    /// define a template for allocating onscreen framebuffers which is
    /// what the `onscreen_template` argument is for, or alternatively
    /// you can use `Display::set_onscreen_template`.
    ///
    /// When a display is first allocated via `Display::new` it is in a
    /// mutable configuration mode. It's designed this way so we can
    /// extend the apis available for configuring a display without
    /// requiring huge numbers of constructor arguments.
    ///
    /// When you have finished configuring a display object you can
    /// optionally call `Display::setup` to explicitly apply the
    /// configuration and check for errors. Alternaitvely you can pass the
    /// display to `Context::new` and Cogl will implicitly apply your
    /// configuration but if there are errors then the application will
    /// abort with a message. For simple applications with no fallback
    /// options then relying on the implicit setup can be fine.
    /// ## `renderer`
    /// A `Renderer`
    /// ## `onscreen_template`
    /// A `OnscreenTemplate`
    ///
    /// # Returns
    ///
    /// A newly allocated `Display`
    ///  object in a mutable configuration mode.
    pub fn new(renderer: &Renderer, onscreen_template: &OnscreenTemplate) -> Display {
        unsafe {
            from_glib_full(ffi::cogl_display_new(
                renderer.to_glib_none().0,
                onscreen_template.to_glib_none().0,
            ))
        }
    }

    /// Queries the `Renderer` associated with the given `self`.
    ///
    /// # Returns
    ///
    /// The associated `Renderer`
    pub fn get_renderer(&self) -> Option<Renderer> {
        unsafe { from_glib_none(ffi::cogl_display_get_renderer(self.to_glib_none().0)) }
    }

    /// Specifies a template for creating `Onscreen` framebuffers.
    ///
    /// Depending on the system, the constraints for creating `Onscreen`
    /// framebuffers need to be known before setting up a `Display` because the
    /// final setup of the display may constrain how onscreen framebuffers may be
    /// allocated. If Cogl knows how an application wants to allocate onscreen
    /// framebuffers then it can try to make sure to setup the display accordingly.
    /// ## `onscreen_template`
    /// A template for creating `Onscreen` framebuffers
    pub fn set_onscreen_template(&self, onscreen_template: &OnscreenTemplate) {
        unsafe {
            ffi::cogl_display_set_onscreen_template(
                self.to_glib_none().0,
                onscreen_template.to_glib_none().0,
            );
        }
    }

    /// Explicitly sets up the given `self` object. Use of this api is
    /// optional since Cogl will internally setup the display if not done
    /// explicitly.
    ///
    /// When a display is first allocated via `Display::new` it is in a
    /// mutable configuration mode. This allows us to extend the apis
    /// available for configuring a display without requiring huge numbers
    /// of constructor arguments.
    ///
    /// Its possible to request a configuration that might not be
    /// supportable on the current system and so this api provides a means
    /// to apply the configuration explicitly but if it fails then an
    /// exception will be returned so you can handle the error gracefully
    /// and perhaps fall back to an alternative configuration.
    ///
    /// If you instead rely on Cogl implicitly calling `Display::setup`
    /// for you then if there is an error with the configuration you won't
    /// get an opportunity to handle that and the application may abort
    /// with a message. For simple applications that don't have any
    /// fallback options this behaviour may be fine.
    ///
    /// # Returns
    ///
    /// Returns `true` if there was no error, else it returns
    ///  `false` and returns an exception via `error`.
    pub fn setup(&self) -> Result<bool, glib::Error> {
        unsafe {
            let mut error = ptr::null_mut();
            let ret = ffi::cogl_display_setup(self.to_glib_none().0, &mut error);
            if error.is_null() {
                Ok(ret == crate::TRUE)
            } else {
                Err(from_glib_full(error))
            }
        }
    }
}

impl fmt::Display for Display {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Display")
    }
}