1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Copyright 2017 Pavel Shaydo
//
// Licensed under the MIT license see LICENSE file

//! Allows access two read-only slices as a single vector.
use std::iter::IntoIterator;
use std::iter::Iterator;
use std::ops::Index;

/// Read-only array type allowing access two slices as a single continuous vector.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
/// use uvector::UVec;
///
/// // Return sum of the first 3 numbers in VecDeque
/// fn head3_sum(vd: &VecDeque<i32>) -> i32 {
///     let uv = UVec::new(vd.as_slices());
///     uv.range(0,3).iter().fold(0, |sum, x| sum + x)
/// }
///
/// fn main() {
///     let mut vd: VecDeque<i32> = VecDeque::new();
///     for i in 1..6 {
///         vd.push_back(i);
///     }
///     let s = head3_sum(&vd);
///     assert_eq!(s, 6);
/// }
/// ```
///
/// # Indexing
///
/// The `UVec` type allows you to access values by index, because it implements the `Index`
/// trait. For example:
///
/// ```
/// # use uvector::UVec;
/// let uv = UVec::new((&[1, 2, 3], &[4, 5, 6]));
/// assert_eq!(uv[3], 4);
/// ```
///
/// If you try accessing an index which is out of range it will panic:
///
/// ```should_panic
/// # use uvector::UVec;
/// let uv = UVec::new((&[1, 2, 3], &[4, 5, 6]));
/// assert_eq!(uv[9], 0); // it will panic
/// ```
///
/// # Ranges
///
/// You can get a subset of values using `range` method. It returns a new `UVec` which contains
/// only specified range of values:
///
/// ```
/// # use uvector::UVec;
/// let uv = UVec::new((&[1, 2, 3], &[4, 5, 6]));
/// let sub = uv.range(2, 4); // that will only contain [3, 4]
/// assert_eq!(uv[2], sub[0]);
/// assert_eq!(uv[3], sub[1]);
/// ```
///
/// # Iterator
///
/// You can get iterator for `UVec` using `iter()` method. It also implements `IntoIterator`
/// trait, so you can iterate over it directly:
///
/// ```
/// # use uvector::UVec;
/// let uv = UVec::new((&[1, 2, 3], &[4, 5, 6]));
/// let mut sum = 0;
/// for i in &uv {
///     sum += i;
/// }
/// assert_eq!(sum, 21);
/// ```
#[derive(Debug)]
pub struct UVec<'a, T: 'a> {
    s: (&'a [T], &'a [T]),
}

impl<'a, T> UVec<'a, T> {
    /// Constructs a new `UVec<T>` from a tupple of two slices
    pub fn new(s: (&'a [T], &'a [T])) -> Self {
        UVec { s }
    }
    /// Constructs a new empty `UVec<T>`
    ///
    /// ```
    /// # use uvector::UVec;
    /// let uv: UVec<u32> = UVec::empty();
    /// assert_eq!(uv.len(), 0);
    /// ```
    pub fn empty() -> Self {
        UVec { s: (&[], &[]) }
    }
    /// Returns the length of the vector. The length is determined as the sum of lengths of all the
    /// components.
    pub fn len(&self) -> usize {
        self.s.0.len() + self.s.1.len()
    }
    /// Returns true if vector is empty.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }
    /// Returns iterator over `UVec`
    pub fn iter(&self) -> Iter<T> {
        Iter { pos: 0, s: self.s }
    }
    /// Returns a new UVec that only includes the values from the specified range.
    ///
    /// # Panics
    ///
    /// Panics if the specified range is not contained within the `UVec`
    pub fn range(&self, start: usize, end: usize) -> Self {
        let len1 = self.s.0.len();
        let start1 = if start < len1 { start } else { len1 };
        let end1 = if end < len1 { end } else { len1 };
        let start2 = if start < len1 { 0 } else { start - len1 };
        let end2 = if end < len1 { 0 } else { end - len1 };
        Self::new((&self.s.0[start1..end1], &self.s.1[start2..end2]))
    }
}

impl<'a, T> Clone for UVec<'a, T> {
    fn clone(&self) -> Self {
        UVec { s: self.s }
    }
}

impl<'a, T> Index<usize> for UVec<'a, T> {
    type Output = T;
    fn index(&self, index: usize) -> &T {
        let len = self.s.0.len();
        if index < len {
            &self.s.0[index]
        } else {
            &self.s.1[index - len]
        }
    }
}

/// An iterator over the elements of a `UVec`
pub struct Iter<'a, T: 'a> {
    pos: usize,
    s: (&'a [T], &'a [T]),
}

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;
    fn next(&mut self) -> Option<&'a T> {
        let len1 = self.s.0.len();
        let pos = self.pos;
        if pos < len1 {
            self.pos += 1;
            Some(&self.s.0[pos])
        } else {
            let len2 = self.s.1.len();
            if pos < len1 + len2 {
                self.pos += 1;
                Some(&self.s.1[pos - len1])
            } else {
                None
            }
        }
    }
}

impl<'a, T> IntoIterator for UVec<'a, T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;
    fn into_iter(self) -> Iter<'a, T> {
        Iter { pos: 0, s: self.s }
    }
}

impl<'a, T> IntoIterator for &'a UVec<'a, T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;
    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn index() {
        let one = &[5, 10, 15];
        let two = &[20, 25];
        let uv1 = UVec::new((one, two));
        assert_eq!(uv1.len(), 5);
        assert_eq!(uv1[0], 5);
        assert_eq!(uv1[2], 15);
        assert_eq!(uv1[3], 20);
        let uv2 = UVec::new((&[], two));
        assert_eq!(uv2.len(), 2);
        assert_eq!(uv2[0], 20);
        assert_eq!(uv2[1], 25);
    }

    #[test]
    #[should_panic]
    fn index_outofrange() {
        let uv = UVec::new((&[1, 2], &[]));
        let _r = uv[2];
    }

    #[test]
    fn subrange() {
        let uv = UVec::new((&[1, 2, 3], &[4, 5, 6]));
        let uv1 = uv.range(1, 5);
        assert_eq!(uv1.is_empty(), false);
        assert_eq!(uv1.len(), 4);
        assert_eq!(uv1[0], 2);
        assert_eq!(uv1[3], 5);
        let uv2 = uv.range(0, 2);
        assert_eq!(uv2.len(), 2);
        assert_eq!(uv2[1], 2);
        let uv3 = uv.range(3, 4);
        assert_eq!(uv3.len(), 1);
        assert_eq!(uv3[0], 4);
        let uv4 = uv.range(4, 4);
        assert_eq!(uv4.len(), 0);
        assert_eq!(uv4.is_empty(), true);
    }

    #[test]
    fn iter() {
        let uv = UVec::new((&[1i32, 2, 3], &[4, 5, 6]));
        assert_eq!(
            uv.range(2, 4).iter().map(|x| *x).collect::<Vec<i32>>(),
            vec![3, 4]
        );
        let mut sum = 0i32;
        for i in &uv {
            sum += i
        }
        assert_eq!(sum, 21);
        let mut sum2 = 0;
        for i in uv.range(1, 5) {
            sum2 += i
        }
        assert_eq!(sum2, 14);
    }

    #[test]
    fn clone() {
        let uv = UVec::new((&[1, 2], &[3, 4]));
        let cv = uv.clone();
        assert_eq!(cv.len(), 4);
    }
}