1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
//  * This file is part of the uutils coreutils package.
//  *
//  * For the full copyright and license information, please view the LICENSE
//  * file that was distributed with this source code.

// spell-checker:ignore (ToDO) hdsf ghead gtail

use std::convert::TryFrom;
use std::error::Error;
use std::fmt;

use crate::display::Quotable;

/// Parse a size string into a number of bytes.
///
/// A size string comprises an integer and an optional unit. The unit
/// may be K, M, G, T, P, E, Z or Y (powers of 1024), or KB, MB,
/// etc. (powers of 1000), or b which is 512.
/// Binary prefixes can be used, too: KiB=K, MiB=M, and so on.
///
/// # Errors
///
/// Will return `ParseSizeError` if it's not possible to parse this
/// string into a number, e.g. if the string does not begin with a
/// numeral, or if the unit is not one of the supported units described
/// in the preceding section.
///
/// # Examples
///
/// ```rust
/// use uucore::parse_size::parse_size;
/// assert_eq!(Ok(123), parse_size("123"));
/// assert_eq!(Ok(9 * 1000), parse_size("9kB")); // kB is 1000
/// assert_eq!(Ok(2 * 1024), parse_size("2K")); // K is 1024
/// ```
pub fn parse_size(size: &str) -> Result<usize, ParseSizeError> {
    if size.is_empty() {
        return Err(ParseSizeError::parse_failure(size));
    }
    // Get the numeric part of the size argument. For example, if the
    // argument is "123K", then the numeric part is "123".
    let numeric_string: String = size.chars().take_while(|c| c.is_digit(10)).collect();
    let number: usize = if !numeric_string.is_empty() {
        match numeric_string.parse() {
            Ok(n) => n,
            Err(_) => return Err(ParseSizeError::parse_failure(size)),
        }
    } else {
        1
    };

    // Get the alphabetic units part of the size argument and compute
    // the factor it represents. For example, if the argument is "123K",
    // then the unit part is "K" and the factor is 1024. This may be the
    // empty string, in which case, the factor is 1.
    let unit = &size[numeric_string.len()..];
    let (base, exponent): (u128, u32) = match unit {
        "" => (1, 0),
        "b" => (512, 1), // (`od`, `head` and `tail` use "b")
        "KiB" | "kiB" | "K" | "k" => (1024, 1),
        "MiB" | "miB" | "M" | "m" => (1024, 2),
        "GiB" | "giB" | "G" | "g" => (1024, 3),
        "TiB" | "tiB" | "T" | "t" => (1024, 4),
        "PiB" | "piB" | "P" | "p" => (1024, 5),
        "EiB" | "eiB" | "E" | "e" => (1024, 6),
        "ZiB" | "ziB" | "Z" | "z" => (1024, 7),
        "YiB" | "yiB" | "Y" | "y" => (1024, 8),
        "KB" | "kB" => (1000, 1),
        "MB" | "mB" => (1000, 2),
        "GB" | "gB" => (1000, 3),
        "TB" | "tB" => (1000, 4),
        "PB" | "pB" => (1000, 5),
        "EB" | "eB" => (1000, 6),
        "ZB" | "zB" => (1000, 7),
        "YB" | "yB" => (1000, 8),
        _ => return Err(ParseSizeError::parse_failure(size)),
    };
    let factor = match usize::try_from(base.pow(exponent)) {
        Ok(n) => n,
        Err(_) => return Err(ParseSizeError::size_too_big(size)),
    };
    number
        .checked_mul(factor)
        .ok_or_else(|| ParseSizeError::size_too_big(size))
}

#[derive(Debug, PartialEq, Eq)]
pub enum ParseSizeError {
    ParseFailure(String), // Syntax
    SizeTooBig(String),   // Overflow
}

impl Error for ParseSizeError {
    fn description(&self) -> &str {
        match *self {
            ParseSizeError::ParseFailure(ref s) => &*s,
            ParseSizeError::SizeTooBig(ref s) => &*s,
        }
    }
}

impl fmt::Display for ParseSizeError {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        let s = match self {
            ParseSizeError::ParseFailure(s) => s,
            ParseSizeError::SizeTooBig(s) => s,
        };
        write!(f, "{}", s)
    }
}

// FIXME: It's more idiomatic to move the formatting into the Display impl,
// but there's a lot of downstream code that constructs these errors manually
// that would be affected
impl ParseSizeError {
    fn parse_failure(s: &str) -> ParseSizeError {
        // stderr on linux (GNU coreutils 8.32) (LC_ALL=C)
        // has to be handled in the respective uutils because strings differ, e.g.:
        //
        // `NUM`
        // head:     invalid number of bytes: '1fb'
        // tail:     invalid number of bytes: '1fb'
        //
        // `SIZE`
        // split:    invalid number of bytes: '1fb'
        // truncate: Invalid number: '1fb'
        //
        // `MODE`
        // stdbuf:   invalid mode '1fb'
        //
        // `SIZE`
        // sort:     invalid suffix in --buffer-size argument '1fb'
        // sort:     invalid --buffer-size argument 'fb'
        //
        // `SIZE`
        // du:       invalid suffix in --buffer-size argument '1fb'
        // du:       invalid suffix in --threshold argument '1fb'
        // du:       invalid --buffer-size argument 'fb'
        // du:       invalid --threshold argument 'fb'
        //
        // `BYTES`
        // od:       invalid suffix in --read-bytes argument '1fb'
        // od:       invalid --read-bytes argument  argument 'fb'
        //                   --skip-bytes
        //                   --width
        //                   --strings
        // etc.
        ParseSizeError::ParseFailure(format!("{}", s.quote()))
    }

    fn size_too_big(s: &str) -> ParseSizeError {
        // stderr on linux (GNU coreutils 8.32) (LC_ALL=C)
        // has to be handled in the respective uutils because strings differ, e.g.:
        //
        // head:     invalid number of bytes: '1Y': Value too large for defined data type
        // tail:     invalid number of bytes: '1Y': Value too large for defined data type
        // split:    invalid number of bytes: '1Y': Value too large for defined data type
        // truncate:          Invalid number: '1Y': Value too large for defined data type
        // stdbuf:               invalid mode '1Y': Value too large for defined data type
        // sort:     -S argument '1Y' too large
        // du:       -B argument '1Y' too large
        // od:       -N argument '1Y' too large
        // etc.
        //
        // stderr on macos (brew - GNU coreutils 8.32) also differs for the same version, e.g.:
        // ghead:   invalid number of bytes: '1Y': Value too large to be stored in data type
        // gtail:   invalid number of bytes: '1Y': Value too large to be stored in data type
        ParseSizeError::SizeTooBig(format!(
            "{}: Value too large for defined data type",
            s.quote()
        ))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn variant_eq(a: &ParseSizeError, b: &ParseSizeError) -> bool {
        std::mem::discriminant(a) == std::mem::discriminant(b)
    }

    #[test]
    fn all_suffixes() {
        // Units  are  K,M,G,T,P,E,Z,Y  (powers  of 1024) or KB,MB,... (powers of 1000).
        // Binary prefixes can be used, too: KiB=K, MiB=M, and so on.
        let suffixes = [
            ('K', 1u32),
            ('M', 2u32),
            ('G', 3u32),
            ('T', 4u32),
            ('P', 5u32),
            ('E', 6u32),
            #[cfg(target_pointer_width = "128")]
            ('Z', 7u32), // ParseSizeError::SizeTooBig on x64
            #[cfg(target_pointer_width = "128")]
            ('Y', 8u32), // ParseSizeError::SizeTooBig on x64
        ];

        for &(c, exp) in &suffixes {
            let s = format!("2{}B", c); // KB
            assert_eq!(Ok((2 * (1000_u128).pow(exp)) as usize), parse_size(&s));
            let s = format!("2{}", c); // K
            assert_eq!(Ok((2 * (1024_u128).pow(exp)) as usize), parse_size(&s));
            let s = format!("2{}iB", c); // KiB
            assert_eq!(Ok((2 * (1024_u128).pow(exp)) as usize), parse_size(&s));
            let s = format!("2{}iB", c.to_lowercase()); // kiB
            assert_eq!(Ok((2 * (1024_u128).pow(exp)) as usize), parse_size(&s));

            // suffix only
            let s = format!("{}B", c); // KB
            assert_eq!(Ok(((1000_u128).pow(exp)) as usize), parse_size(&s));
            let s = format!("{}", c); // K
            assert_eq!(Ok(((1024_u128).pow(exp)) as usize), parse_size(&s));
            let s = format!("{}iB", c); // KiB
            assert_eq!(Ok(((1024_u128).pow(exp)) as usize), parse_size(&s));
            let s = format!("{}iB", c.to_lowercase()); // kiB
            assert_eq!(Ok(((1024_u128).pow(exp)) as usize), parse_size(&s));
        }
    }

    #[test]
    #[cfg(not(target_pointer_width = "128"))]
    fn overflow_x64() {
        assert!(parse_size("10000000000000000000000").is_err());
        assert!(parse_size("1000000000T").is_err());
        assert!(parse_size("100000P").is_err());
        assert!(parse_size("100E").is_err());
        assert!(parse_size("1Z").is_err());
        assert!(parse_size("1Y").is_err());

        assert!(variant_eq(
            &parse_size("1Z").unwrap_err(),
            &ParseSizeError::SizeTooBig(String::new())
        ));

        assert_eq!(
            ParseSizeError::SizeTooBig("'1Y': Value too large for defined data type".to_string()),
            parse_size("1Y").unwrap_err()
        );
    }

    #[test]
    #[cfg(target_pointer_width = "32")]
    fn overflow_x32() {
        assert!(variant_eq(
            &parse_size("1T").unwrap_err(),
            &ParseSizeError::SizeTooBig(String::new())
        ));
        assert!(variant_eq(
            &parse_size("1000G").unwrap_err(),
            &ParseSizeError::SizeTooBig(String::new())
        ));
    }

    #[test]
    fn invalid_syntax() {
        let test_strings = [
            "328hdsf3290",
            "5MiB nonsense",
            "5mib",
            "biB",
            "-",
            "+",
            "",
            "-1",
            "1e2",
            "∞",
        ];
        for &test_string in &test_strings {
            assert_eq!(
                parse_size(test_string).unwrap_err(),
                ParseSizeError::ParseFailure(format!("{}", test_string.quote()))
            );
        }
    }

    #[test]
    fn b_suffix() {
        assert_eq!(Ok(3 * 512), parse_size("3b")); // b is 512
    }

    #[test]
    fn no_suffix() {
        assert_eq!(Ok(1234), parse_size("1234"));
        assert_eq!(Ok(0), parse_size("0"));
        assert_eq!(Ok(5), parse_size("5"));
        assert_eq!(Ok(999), parse_size("999"));
    }

    #[test]
    fn kilobytes_suffix() {
        assert_eq!(Ok(123 * 1000), parse_size("123KB")); // KB is 1000
        assert_eq!(Ok(9 * 1000), parse_size("9kB")); // kB is 1000
        assert_eq!(Ok(2 * 1024), parse_size("2K")); // K is 1024
        assert_eq!(Ok(0), parse_size("0K"));
        assert_eq!(Ok(0), parse_size("0KB"));
        assert_eq!(Ok(1000), parse_size("KB"));
        assert_eq!(Ok(1024), parse_size("K"));
        assert_eq!(Ok(2000), parse_size("2kB"));
        assert_eq!(Ok(4000), parse_size("4KB"));
    }

    #[test]
    fn megabytes_suffix() {
        assert_eq!(Ok(123 * 1024 * 1024), parse_size("123M"));
        assert_eq!(Ok(123 * 1000 * 1000), parse_size("123MB"));
        assert_eq!(Ok(1024 * 1024), parse_size("M"));
        assert_eq!(Ok(1000 * 1000), parse_size("MB"));
        assert_eq!(Ok(2 * 1_048_576), parse_size("2m"));
        assert_eq!(Ok(4 * 1_048_576), parse_size("4M"));
        assert_eq!(Ok(2_000_000), parse_size("2mB"));
        assert_eq!(Ok(4_000_000), parse_size("4MB"));
    }

    #[test]
    fn gigabytes_suffix() {
        assert_eq!(Ok(1_073_741_824), parse_size("1G"));
        assert_eq!(Ok(2_000_000_000), parse_size("2GB"));
    }

    #[test]
    #[cfg(target_pointer_width = "64")]
    fn x64() {
        assert_eq!(Ok(1_099_511_627_776), parse_size("1T"));
        assert_eq!(Ok(1_125_899_906_842_624), parse_size("1P"));
        assert_eq!(Ok(1_152_921_504_606_846_976), parse_size("1E"));
        assert_eq!(Ok(2_000_000_000_000), parse_size("2TB"));
        assert_eq!(Ok(2_000_000_000_000_000), parse_size("2PB"));
        assert_eq!(Ok(2_000_000_000_000_000_000), parse_size("2EB"));
    }
}