1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#[macro_use]
extern crate log;
extern crate failure;
extern crate libusb;
#[macro_use]
extern crate failure_derive;

use libusb::{Context, Device, DeviceDescriptor, DeviceHandle, Direction, Recipient, RequestType,
             Result as UsbResult, TransferType};
use std::time::Duration;

// USBRH USB spec.
const VID: u16 = 0x1774;
const PID: u16 = 0x1001;
const SENSOR_ENDPOINT: u8 = 0x81;

// from SHT1x datasheet
const D1: f64 = -40.00;
const D2: f64 = 0.01;
const C1: f64 = -4.0;
const C2: f64 = 0.0405;
const C3: f64 = -2.8e-6;
const T1: f64 = 0.01;
const T2: f64 = 0.00008;

/// Library error
#[derive(Fail, Debug)]
pub enum UsbrhError {
    /// Target device not found
    #[fail(display = "Target device not found")]
    DeviceNotFound,
    /// Read error with error message
    #[fail(display = "Read error: {}", _0)]
    ReadError(String),
    /// Error from libusb::Error
    #[fail(display = "{}", _0)]
    Usb(#[cause] libusb::Error),
}

/// Sensor result
#[derive(Debug)]
pub struct SensorValues {
    /// Temperature in Celsius
    pub temperature: f64,
    /// Humidity in percent
    pub humidity: f64,
}

#[derive(Copy, Clone, Debug)]
struct Endpoint {
    config: u8,
    interface: u8,
    setting: u8,
    address: u8,
}

impl From<libusb::Error> for UsbrhError {
    fn from(e: libusb::Error) -> Self {
        UsbrhError::Usb(e)
    }
}

type Result<T> = std::result::Result<T, UsbrhError>;

/// read values from the sensor.
/// # Arguments
/// * `verbose` - 0 to 2 verbosity level
/// * `device_num` - target device index
pub fn read_sensors(verbose: u32, device_num: u32) -> Result<SensorValues> {
    let mut context = Context::new()?;
    if verbose >= 2 {
        context.set_log_level(libusb::LogLevel::Debug);
    }

    let ret = match open_device(&context, VID, PID, device_num)? {
        Some((mut device, device_desc, mut handle)) => {
            info!("device found");

            read_device(&mut device, &device_desc, &mut handle)
        }
        None => Err(UsbrhError::DeviceNotFound),
    };

    ret
}

fn open_device(
    context: &Context,
    vid: u16,
    pid: u16,
    device_num: u32,
) -> Result<Option<(Device, DeviceDescriptor, DeviceHandle)>> {
    let devices = match context.devices() {
        Ok(d) => d,
        Err(_) => return Ok(None),
    };
    let mut count = 0;

    for device in devices.iter() {
        let device_desc = match device.device_descriptor() {
            Ok(d) => d,
            Err(_) => continue,
        };

        if device_desc.vendor_id() == vid && device_desc.product_id() == pid {
            count += 1;
            if count == device_num {
                return device
                    .open()
                    .map(|handle| Some((device, device_desc, handle)))
                    .map_err(UsbrhError::from);
            }
        }
    }

    Ok(None)
}

fn send_control_msg(handle: &mut DeviceHandle) -> UsbResult<()> {
    let request_type: u8 =
        libusb::request_type(Direction::Out, RequestType::Class, Recipient::Interface);
    debug!("request_type: {:x}", request_type);
    let request: u8 = 0x09;
    let value: u16 = 0x0200;
    let index: u16 = 0;
    let buf = [0u8; 7];
    let timeout = Duration::from_secs(5);
    handle.write_control(request_type, request, value, index, &buf, timeout)?;
    Ok(())
}

fn read_device(
    device: &mut Device,
    device_desc: &DeviceDescriptor,
    handle: &mut DeviceHandle,
) -> Result<SensorValues> {
    handle.reset()?;

    match find_readable_endpoint(device, device_desc, TransferType::Interrupt) {
        Some(endpoint) => {
            debug!("endpoint found: {:?}", endpoint);
            read_endpoint(handle, endpoint)
        }
        None => Err(UsbrhError::ReadError(
            "No readable interrupt endpoint found".to_string(),
        )),
    }
}

fn find_readable_endpoint(
    device: &mut Device,
    device_desc: &DeviceDescriptor,
    transfer_type: TransferType,
) -> Option<Endpoint> {
    for n in 0..device_desc.num_configurations() {
        let config_desc = match device.config_descriptor(n) {
            Ok(c) => c,
            Err(_) => continue,
        };

        for interface in config_desc.interfaces() {
            for interface_desc in interface.descriptors() {
                for endpoint_desc in interface_desc.endpoint_descriptors() {
                    if endpoint_desc.direction() == Direction::In
                        && endpoint_desc.transfer_type() == transfer_type
                    {
                        return Some(Endpoint {
                            config: config_desc.number(),
                            interface: interface_desc.interface_number(),
                            setting: interface_desc.setting_number(),
                            address: endpoint_desc.address(),
                        });
                    }
                }
            }
        }
    }

    None
}

fn read_endpoint(handle: &mut DeviceHandle, endpoint: Endpoint) -> Result<SensorValues> {
    fn read(handle: &mut DeviceHandle) -> Result<SensorValues> {
        debug!("send_control_msg()");
        send_control_msg(handle)?;
        std::thread::sleep(Duration::from_secs(1));

        let mut buf = [0u8; 7];
        let timeout = Duration::from_secs(5);

        match handle.read_interrupt(SENSOR_ENDPOINT, &mut buf, timeout) {
            Ok(len) if len == buf.len() => {
                debug!("read buf: {:x?}", buf);
                Ok(parse_sensor_values(&buf))
            }
            Ok(len) => Err(UsbrhError::ReadError(format!("{} != {}", len, buf.len()))),
            Err(err) => Err(UsbrhError::from(err)),
        }
    }

    match configure_endpoint(handle, &endpoint) {
        Ok(_) => {
            let has_kernel_driver = match handle.kernel_driver_active(endpoint.interface) {
                Ok(true) => {
                    debug!("kernel driver is active");
                    handle.detach_kernel_driver(endpoint.interface)?;
                    true
                }
                _ => false,
            };
            debug!("kernel driver? {}", has_kernel_driver);

            let ret = read(handle);

            if has_kernel_driver {
                handle.attach_kernel_driver(endpoint.interface)?;
            }

            ret
        }
        Err(err) => Err(UsbrhError::from(err)),
    }
}

fn configure_endpoint(handle: &mut DeviceHandle, endpoint: &Endpoint) -> UsbResult<()> {
    debug!("set_active_configuration({})", endpoint.config);
    handle.set_active_configuration(endpoint.config)?;
    debug!("claim_interface({})", endpoint.interface);
    handle.claim_interface(endpoint.interface)?;
    debug!(
        "set_alternate_setting({}, {})",
        endpoint.interface, endpoint.setting
    );
    handle.set_alternate_setting(endpoint.interface, endpoint.setting)?;
    Ok(())
}

fn parse_sensor_values(buf: &[u8]) -> SensorValues {
    assert_eq!(buf.len(), 7);
    let temperature = (u32::from(buf[2]) << 8) | u32::from(buf[3]);
    let temperature = D1 + D2 * f64::from(temperature);

    let so_rh = f64::from(u32::from(buf[0]) << 8 | u32::from(buf[1]));
    let rh_linear = C1 + (C2 * so_rh) + (C3 * (so_rh * so_rh));
    let rh_true = (temperature - 25.0) * (T1 + T2 * so_rh) + rh_linear;

    // Values higher than 99% RH indicate fully saturated air and must be processed and displayed as 100% RH.
    SensorValues {
        temperature,
        humidity: if rh_true >= 99.0 { 100.0 } else { rh_true },
    }
}