1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
//! Electrical mobility (base unit square meter per volt second, kg⁻¹ · s² · A).

quantity! {
    /// Electrical mobility (base unit square meter per volt second, kg⁻¹ · s² · A).
    quantity: ElectricalMobility; "electrical mobility";
    /// Dimension of electrical mobility, M⁻¹T²I⁻¹ (base unit square meter per volt second,
    /// kg⁻¹ · s² · A).
    dimension: ISQ<
        Z0,     // length
        N1,     // mass
        P2,     // time
        P1,     // electric current
        Z0,     // thermodynamic temperature
        Z0,     // amount of substance
        Z0>;    // luminous intensity
    units {
        @square_meter_per_volt_second: prefix!(none); "m²/(V · s)", "square meter per volt second",
            "square meters per volt second";
        @square_centimeter_per_volt_second: prefix!(centi) * prefix!(centi); "cm²/(V · s)",
            "square centimeter per volt second", "square centimeters per volt second";
    }
}

#[cfg(test)]
mod test {
    storage_types! {
        use crate::num::One;
        use crate::si::electrical_mobility as em;
        use crate::si::electric_potential as ep;
        use crate::si::time as t;
        use crate::si::length as l;
        use crate::si::quantities::*;
        use crate::tests::Test;

        #[test]
        fn check_dimension() {
            let _: ElectricalMobility<V> = Length::new::<l::meter>(V::one())
                * Length::new::<l::meter>(V::one())
                / Time::new::<t::second>(V::one())
                / ElectricPotential::new::<ep::volt>(V::one());
        }

        #[test]
        fn check_units() {
            test::<l::meter, ep::volt, t::second, em::square_meter_per_volt_second>();
            test::<l::centimeter, ep::volt, t::second,em::square_centimeter_per_volt_second>();

            fn test<L: l::Conversion<V>, EP: ep::Conversion<V>, T: t::Conversion<V>,
                EM: em::Conversion<V>>()
            {
                Test::assert_approx_eq(&ElectricalMobility::new::<EM>(V::one()),
                    &(Length::new::<L>(V::one())
                        * Length::new::<L>(V::one())
                        / ElectricPotential::new::<EP>(V::one())
                        / Time::new::<T>(V::one())));
            }
        }
    }
}