1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
//! Allocators which create one unique, shared pointer per distinct object.
//! Useful for applications with highly-redundant data structures such as compilers or automatic theorem provers.
//!
//! If `t1 == t2` (as determined by the allocator), then `Id::new(t1)` is pointer-equal to `Id::new(t2)`.
//! This property reduces memory use, reduces allocator hits, and allows for short-circuiting operations such as `Eq` and `Hash` by using the pointer rather than the data.
//!
//! Occasionally you may wish to "garbage collect" unused objects.
//! This can be achieved with `Allocator::delete_unused`.
//!
//! # Example
//! ```rust
//! use unique::{Allocated, Id, make_allocator};
//! use unique::allocators::HashAllocator;
//!
//! #[derive(PartialEq, Eq, Hash)]
//! enum Expr {
//!     Const(i32),
//!     Add(Id<Expr>, Id<Expr>),
//! }
//! make_allocator!(Expr, EXPR_ALLOC, HashAllocator);
//!
//! #[test]
//! fn example() {
//!     use Expr::*;
//!
//!     // Equivalent ways of allocating a `2` object.
//!     let two_x = Expr::allocator().allocate(Const(2));
//!     let two_y = EXPR_ALLOC.allocate(Const(2));
//!     let two_z = Id::new(Const(2));
//!     assert_eq!(*two_x, *two_y, *two_z, Const(2));
//!     assert_eq!(two_x, two_y, two_z);
//!
//!     // A distinct object, 2 + 2.
//!     let four = Id::new(Add(two_x.clone(), two_y.clone()));
//!     assert_ne!(two_x, four);
//!
//!     // Note only two allocations.
//!     assert_eq!(EXPR_ALLOC.allocations(), 2);
//!
//!     std::mem::drop(four);
//!
//!     // Still two allocations.
//!     assert_eq!(EXPR_ALLOC.allocations(), 2);
//!     EXPR_ALLOC.delete_unused();
//!     // Now four is no more.
//!     assert_eq!(EXPR_ALLOC.allocations(), 1);
//! }
//! ```

use std::borrow::Borrow;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::Deref;
use std::sync::Arc;

/// Possible allocators to use
pub mod allocators;

#[cfg(test)]
mod tests;

/// Allocate shared unique pointers
pub trait Allocator<T: Eq>: Default {
    /// Recycle a value if possible, or allocate a new one
    fn allocate(&self, t: T) -> Id<T>;

    /// The current number of allocations
    fn allocations(&self) -> usize;

    /// Sweep for unused values and delete them
    fn delete_unused(&self);
}

/// A type which has some allocator
///
/// Allows the use of `Id::new`
pub trait Allocated: Eq + Sized + 'static {
    type Alloc: Allocator<Self>;

    fn allocator() -> &'static Self::Alloc;
}

/// A unique, shared pointer
///
#[derive(Default, PartialOrd, Ord)]
pub struct Id<T>(Arc<T>);

impl<T> Id<T> {
    /// Produce a unique integral identifier from an `Id`
    pub fn id(p: &Self) -> usize {
        &*p.0 as *const T as usize
    }

    /// Consumes the `Id` and produces a raw pointer.
    /// Must be converted back with `from_raw` to avoid a leak.
    #[allow(clippy::wrong_self_convention)]
    pub unsafe fn into_raw(p: Self) -> *const T {
        Arc::into_raw(p.0)
    }

    /// Must have previously been produced by `Id::into_raw`.
    pub unsafe fn from_id(id: usize) -> Id<T> {
        let ptr = id as *const T;
        let arc = Arc::from_raw(ptr);
        Id(arc)
    }
}

impl<T: Allocated> Id<T> {
    /// Get a shared pointer to (something value-equal to) `t`
    pub fn new(t: T) -> Self {
        T::allocator().allocate(t)
    }
}

impl<T> Clone for Id<T> {
    fn clone(&self) -> Self {
        Id(Arc::clone(&self.0))
    }
}

impl<T> PartialEq for Id<T> {
    fn eq(&self, other: &Self) -> bool {
        Arc::ptr_eq(&self.0, &other.0)
    }
}

impl<T> Eq for Id<T> {}

impl<T> Hash for Id<T> {
    fn hash<H: Hasher>(&self, hasher: &mut H) {
        Id::id(self).hash(hasher);
    }
}

impl<T> Deref for Id<T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        self.0.deref()
    }
}

impl<T: fmt::Debug> fmt::Debug for Id<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl<T: fmt::Display> fmt::Display for Id<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl<T> fmt::Pointer for Id<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl<T> AsRef<T> for Id<T> {
    fn as_ref(&self) -> &T {
        self.0.as_ref()
    }
}

impl<T> Borrow<T> for Id<T> {
    fn borrow(&self) -> &T {
        self.0.borrow()
    }
}

/// `make_allocator!(Type, NAME, Allocator)`
///
/// Performs the following steps:
/// - Create a static reference to an `Allocator<Type>` accessible by `NAME`.
/// - Lazily initialise (via `lazy_static`) to `Allocator::default()`.
/// - Implements `Allocated` for `Type` by using this allocator.
#[macro_export]
macro_rules! make_allocator {
    ($type:ty, $name:ident, $alloc:ident) => {
        lazy_static::lazy_static! {
            static ref $name: $alloc<$type> = $alloc::default();
        }

        impl $crate::Allocated for $type {
            type Alloc = $alloc<$type>;
            fn allocator() -> &'static Self::Alloc {
                &$name
            }
        }
    };
}