1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
//! Bindings for the Unicorn emulator.
//!
//!
//!
//! # Example use
//!
//! ```rust
//!
//! use unicorn_engine::RegisterARM;
//! use unicorn_engine::unicorn_const::{Arch, Mode, Permission, SECOND_SCALE};
//!
//! fn emulate() {
//! let arm_code32 = [0x17, 0x00, 0x40, 0xe2]; // sub r0, #23
//!
//! let mut emu = unicorn_engine::Unicorn::new(Arch::ARM, Mode::LITTLE_ENDIAN).expect("failed to initialize Unicorn instance");
//! emu.mem_map(0x1000, 0x4000, Permission::ALL).expect("failed to map code page");
//! emu.mem_write(0x1000, &arm_code32).expect("failed to write instructions");
//!
//! emu.reg_write(RegisterARM::R0, 123).expect("failed write R0");
//! emu.reg_write(RegisterARM::R5, 1337).expect("failed write R5");
//!
//! emu.emu_start(0x1000, (0x1000 + arm_code32.len()) as u64, 10 * SECOND_SCALE, 1000).unwrap();
//! assert_eq!(emu.reg_read(RegisterARM::R0), Ok(100));
//! assert_eq!(emu.reg_read(RegisterARM::R5), Ok(1337));
//! }
//! ```
//!
#![no_std]
#[macro_use]
extern crate alloc;
extern crate std;
use alloc::boxed::Box;
use alloc::rc::Rc;
use alloc::vec::Vec;
use core::cell::UnsafeCell;
use core::ptr;
use libc::c_void;
use ffi::uc_handle;
#[macro_use]
pub mod unicorn_const;
pub use unicorn_const::*;
pub mod ffi; // lets consumers call ffi if desired
// include arm support if conditionally compiled in
#[cfg(feature = "arch_arm")]
mod arm;
#[cfg(feature = "arch_arm")]
pub use crate::arm::*;
// include arm64 support if conditionally compiled in
// NOTE: unicorn-c only separates on top-level arch name,
// not on the bit-length, so we include both
#[cfg(feature = "arch_arm")]
mod arm64;
#[cfg(feature = "arch_arm")]
pub use crate::arm64::*;
// include m68k support if conditionally compiled in
#[cfg(feature = "arch_m68k")]
mod m68k;
#[cfg(feature = "arch_m68k")]
pub use crate::m68k::*;
// include mips support if conditionally compiled in
#[cfg(feature = "arch_mips")]
mod mips;
#[cfg(feature = "arch_mips")]
pub use crate::mips::*;
// include ppc support if conditionally compiled in
#[cfg(feature = "arch_ppc")]
mod ppc;
#[cfg(feature = "arch_ppc")]
pub use crate::ppc::*;
// include riscv support if conditionally compiled in
#[cfg(feature = "arch_riscv")]
mod riscv;
#[cfg(feature = "arch_riscv")]
pub use crate::riscv::*;
// include s390x support if conditionally compiled in
#[cfg(feature = "arch_s390x")]
mod s390x;
#[cfg(feature = "arch_s390x")]
pub use crate::s390x::*;
// include sparc support if conditionally compiled in
#[cfg(feature = "arch_sparc")]
mod sparc;
#[cfg(feature = "arch_sparc")]
pub use crate::sparc::*;
// include tricore support if conditionally compiled in
#[cfg(feature = "arch_tricore")]
mod tricore;
#[cfg(feature = "arch_tricore")]
pub use crate::tricore::*;
// include x86 support if conditionally compiled in
#[cfg(feature = "arch_x86")]
mod x86;
#[cfg(feature = "arch_x86")]
pub use crate::x86::*;
#[derive(Debug)]
pub struct Context {
context: ffi::uc_context,
}
impl Context {
#[must_use]
pub fn is_initialized(&self) -> bool {
!self.context.is_null()
}
}
impl Drop for Context {
fn drop(&mut self) {
if self.is_initialized() {
unsafe {
ffi::uc_context_free(self.context);
}
}
self.context = ptr::null_mut();
}
}
pub struct MmioCallbackScope<'a> {
pub regions: Vec<(u64, usize)>,
pub read_callback: Option<Box<dyn ffi::IsUcHook<'a> + 'a>>,
pub write_callback: Option<Box<dyn ffi::IsUcHook<'a> + 'a>>,
}
impl<'a> MmioCallbackScope<'a> {
fn has_regions(&self) -> bool {
!self.regions.is_empty()
}
fn unmap(&mut self, begin: u64, size: usize) {
let end: u64 = begin + size as u64;
self.regions = self
.regions
.iter()
.flat_map(|(b, s)| {
let e: u64 = b + *s as u64;
if begin > *b {
if begin >= e {
// The unmapped region is completely after this region
vec![(*b, *s)]
} else if end >= e {
// The unmapped region overlaps with the end of this region
vec![(*b, (begin - *b) as usize)]
} else {
// The unmapped region is in the middle of this region
let second_b = end + 1;
vec![
(*b, (begin - *b) as usize),
(second_b, (e - second_b) as usize),
]
}
} else if end > *b {
if end >= e {
// The unmapped region completely contains this region
vec![]
} else {
// The unmapped region overlaps with the start of this region
vec![(end, (e - end) as usize)]
}
} else {
// The unmapped region is completely before this region
vec![(*b, *s)]
}
})
.collect();
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct UcHookId(ffi::uc_hook);
pub struct UnicornInner<'a, D> {
pub handle: uc_handle,
pub ffi: bool,
pub arch: Arch,
/// to keep ownership over the hook for this uc instance's lifetime
pub hooks: Vec<(UcHookId, Box<dyn ffi::IsUcHook<'a> + 'a>)>,
/// To keep ownership over the mmio callbacks for this uc instance's lifetime
pub mmio_callbacks: Vec<MmioCallbackScope<'a>>,
pub data: D,
}
/// Drop UC
impl<'a, D> Drop for UnicornInner<'a, D> {
fn drop(&mut self) {
if !self.ffi && !self.handle.is_null() {
unsafe { ffi::uc_close(self.handle) };
}
self.handle = ptr::null_mut();
}
}
/// A Unicorn emulator instance.
pub struct Unicorn<'a, D: 'a> {
inner: Rc<UnsafeCell<UnicornInner<'a, D>>>,
}
impl<'a> Unicorn<'a, ()> {
/// Create a new instance of the unicorn engine for the specified architecture
/// and hardware mode.
pub fn new(arch: Arch, mode: Mode) -> Result<Unicorn<'a, ()>, uc_error> {
Self::new_with_data(arch, mode, ())
}
/// # Safety
/// The function has to be called with a valid uc_handle pointer
/// that was previously allocated by a call to uc_open.
/// Calling the function with a non null pointer value that
/// does not point to a unicorn instance will cause undefined
/// behavior.
pub unsafe fn from_handle(handle: uc_handle) -> Result<Unicorn<'a, ()>, uc_error> {
if handle.is_null() {
return Err(uc_error::HANDLE);
}
let mut arch: libc::size_t = Default::default();
let err = unsafe { ffi::uc_query(handle, Query::ARCH, &mut arch) };
if err != uc_error::OK {
return Err(err);
}
Ok(Unicorn {
inner: Rc::new(UnsafeCell::from(UnicornInner {
handle,
ffi: true,
arch: arch.try_into()?,
data: (),
hooks: vec![],
mmio_callbacks: vec![],
})),
})
}
}
impl<'a, D> Unicorn<'a, D>
where
D: 'a,
{
/// Create a new instance of the unicorn engine for the specified architecture
/// and hardware mode.
pub fn new_with_data(arch: Arch, mode: Mode, data: D) -> Result<Unicorn<'a, D>, uc_error> {
let mut handle = ptr::null_mut();
unsafe { ffi::uc_open(arch, mode, &mut handle) }.and_then(|| {
Ok(Unicorn {
inner: Rc::new(UnsafeCell::from(UnicornInner {
handle,
ffi: false,
arch,
data,
hooks: vec![],
mmio_callbacks: vec![],
})),
})
})
}
}
impl<'a, D> core::fmt::Debug for Unicorn<'a, D> {
fn fmt(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(formatter, "Unicorn {{ uc: {:p} }}", self.get_handle())
}
}
impl<'a, D> Unicorn<'a, D> {
fn inner(&self) -> &UnicornInner<'a, D> {
unsafe { self.inner.get().as_ref().unwrap() }
}
fn inner_mut(&mut self) -> &mut UnicornInner<'a, D> {
unsafe { self.inner.get().as_mut().unwrap() }
}
/// Return whatever data was passed during initialization.
///
/// For an example, have a look at `utils::init_emu_with_heap` where
/// a struct is passed which is used for a custom allocator.
#[must_use]
pub fn get_data(&self) -> &D {
&self.inner().data
}
/// Return a mutable reference to whatever data was passed during initialization.
#[must_use]
pub fn get_data_mut(&mut self) -> &mut D {
&mut self.inner_mut().data
}
/// Return the architecture of the current emulator.
#[must_use]
pub fn get_arch(&self) -> Arch {
self.inner().arch
}
/// Return the handle of the current emulator.
#[must_use]
pub fn get_handle(&self) -> uc_handle {
self.inner().handle
}
/// Returns a vector with the memory regions that are mapped in the emulator.
pub fn mem_regions(&self) -> Result<Vec<MemRegion>, uc_error> {
let mut nb_regions: u32 = 0;
let p_regions: *const MemRegion = ptr::null_mut();
unsafe { ffi::uc_mem_regions(self.get_handle(), &p_regions, &mut nb_regions) }.and_then(
|| {
let mut regions = Vec::new();
for i in 0..nb_regions {
regions.push(unsafe { core::mem::transmute_copy(&*p_regions.add(i as usize)) });
}
unsafe { libc::free(p_regions as _) };
Ok(regions)
},
)
}
/// Read a range of bytes from memory at the specified emulated physical address.
pub fn mem_read(&self, address: u64, buf: &mut [u8]) -> Result<(), uc_error> {
unsafe { ffi::uc_mem_read(self.get_handle(), address, buf.as_mut_ptr(), buf.len()) }.into()
}
/// Return a range of bytes from memory at the specified emulated physical address as vector.
pub fn mem_read_as_vec(&self, address: u64, size: usize) -> Result<Vec<u8>, uc_error> {
let mut buf = vec![0; size];
unsafe { ffi::uc_mem_read(self.get_handle(), address, buf.as_mut_ptr(), size) }.and(Ok(buf))
}
/// Write the data in `bytes` to the emulated physical address `address`
pub fn mem_write(&mut self, address: u64, bytes: &[u8]) -> Result<(), uc_error> {
unsafe { ffi::uc_mem_write(self.get_handle(), address, bytes.as_ptr(), bytes.len()) }.into()
}
/// Map an existing memory region in the emulator at the specified address.
///
/// # Safety
///
/// This function is marked unsafe because it is the responsibility of the caller to
/// ensure that `size` matches the size of the passed buffer, an invalid `size` value will
/// likely cause a crash in unicorn.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
///
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
///
/// `ptr` is a pointer to the provided memory region that will be used by the emulator.
pub unsafe fn mem_map_ptr(
&mut self,
address: u64,
size: usize,
perms: Permission,
ptr: *mut c_void,
) -> Result<(), uc_error> {
ffi::uc_mem_map_ptr(self.get_handle(), address, size, perms.bits(), ptr).into()
}
/// Map a memory region in the emulator at the specified address.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mem_map(
&mut self,
address: u64,
size: libc::size_t,
perms: Permission,
) -> Result<(), uc_error> {
unsafe { ffi::uc_mem_map(self.get_handle(), address, size, perms.bits()) }.into()
}
/// Map in am MMIO region backed by callbacks.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mmio_map<R: 'a, W: 'a>(
&mut self,
address: u64,
size: libc::size_t,
read_callback: Option<R>,
write_callback: Option<W>,
) -> Result<(), uc_error>
where
R: FnMut(&mut Unicorn<D>, u64, usize) -> u64,
W: FnMut(&mut Unicorn<D>, u64, usize, u64),
{
let mut read_data = read_callback.map(|c| {
Box::new(ffi::UcHook {
callback: c,
uc: Rc::downgrade(&self.inner),
})
});
let mut write_data = write_callback.map(|c| {
Box::new(ffi::UcHook {
callback: c,
uc: Rc::downgrade(&self.inner),
})
});
unsafe {
ffi::uc_mmio_map(
self.get_handle(),
address,
size,
match read_data {
Some(_) => ffi::mmio_read_callback_proxy::<D, R> as _,
None => ptr::null_mut(),
},
match read_data {
Some(ref mut d) => d.as_mut() as *mut _ as _,
None => ptr::null_mut(),
},
match write_data {
Some(_) => ffi::mmio_write_callback_proxy::<D, W> as _,
None => ptr::null_mut(),
},
match write_data {
Some(ref mut d) => d.as_mut() as *mut _ as _,
None => ptr::null_mut(),
},
)
}
.and_then(|| {
let rd = read_data.map(|c| c as Box<dyn ffi::IsUcHook>);
let wd = write_data.map(|c| c as Box<dyn ffi::IsUcHook>);
self.inner_mut().mmio_callbacks.push(MmioCallbackScope {
regions: vec![(address, size)],
read_callback: rd,
write_callback: wd,
});
Ok(())
})
}
/// Map in a read-only MMIO region backed by a callback.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mmio_map_ro<F: 'a>(
&mut self,
address: u64,
size: libc::size_t,
callback: F,
) -> Result<(), uc_error>
where
F: FnMut(&mut Unicorn<D>, u64, usize) -> u64,
{
self.mmio_map(
address,
size,
Some(callback),
None::<fn(&mut Unicorn<D>, u64, usize, u64)>,
)
}
/// Map in a write-only MMIO region backed by a callback.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mmio_map_wo<F: 'a>(
&mut self,
address: u64,
size: libc::size_t,
callback: F,
) -> Result<(), uc_error>
where
F: FnMut(&mut Unicorn<D>, u64, usize, u64),
{
self.mmio_map(
address,
size,
None::<fn(&mut Unicorn<D>, u64, usize) -> u64>,
Some(callback),
)
}
/// Unmap a memory region.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mem_unmap(&mut self, address: u64, size: libc::size_t) -> Result<(), uc_error> {
let err = unsafe { ffi::uc_mem_unmap(self.get_handle(), address, size) };
self.mmio_unmap(address, size);
err.into()
}
fn mmio_unmap(&mut self, address: u64, size: libc::size_t) {
for scope in self.inner_mut().mmio_callbacks.iter_mut() {
scope.unmap(address, size);
}
self.inner_mut()
.mmio_callbacks
.retain(|scope| scope.has_regions());
}
/// Set the memory permissions for an existing memory region.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mem_protect(
&mut self,
address: u64,
size: libc::size_t,
perms: Permission,
) -> Result<(), uc_error> {
unsafe { ffi::uc_mem_protect(self.get_handle(), address, size, perms.bits()) }.into()
}
/// Write an unsigned value from a register.
pub fn reg_write<T: Into<i32>>(&mut self, regid: T, value: u64) -> Result<(), uc_error> {
unsafe { ffi::uc_reg_write(self.get_handle(), regid.into(), &value as *const _ as _) }
.into()
}
/// Write variable sized values into registers.
///
/// The user has to make sure that the buffer length matches the register size.
/// This adds support for registers >64 bit (GDTR/IDTR, XMM, YMM, ZMM (x86); Q, V (arm64)).
pub fn reg_write_long<T: Into<i32>>(&self, regid: T, value: &[u8]) -> Result<(), uc_error> {
unsafe { ffi::uc_reg_write(self.get_handle(), regid.into(), value.as_ptr() as _) }.into()
}
/// Read an unsigned value from a register.
///
/// Not to be used with registers larger than 64 bit.
pub fn reg_read<T: Into<i32>>(&self, regid: T) -> Result<u64, uc_error> {
let mut value: u64 = 0;
unsafe { ffi::uc_reg_read(self.get_handle(), regid.into(), &mut value as *mut u64 as _) }
.and(Ok(value))
}
/// Read 128, 256 or 512 bit register value into heap allocated byte array.
///
/// This adds safe support for registers >64 bit (GDTR/IDTR, XMM, YMM, ZMM, ST (x86); Q, V (arm64)).
pub fn reg_read_long<T: Into<i32>>(&self, regid: T) -> Result<Box<[u8]>, uc_error> {
let curr_reg_id = regid.into();
let curr_arch = self.get_arch();
let value_size = match curr_arch {
#[cfg(feature = "arch_x86")]
Arch::X86 => Self::value_size_x86(curr_reg_id)?,
#[cfg(feature = "arch_arm")]
Arch::ARM64 => Self::value_size_arm64(curr_reg_id)?,
_ => Err(uc_error::ARCH)?,
};
let mut value = vec![0; value_size];
unsafe { ffi::uc_reg_read(self.get_handle(), curr_reg_id, value.as_mut_ptr() as _) }
.and_then(|| Ok(value.into_boxed_slice()))
}
#[cfg(feature = "arch_arm")]
fn value_size_arm64(curr_reg_id: i32) -> Result<usize, uc_error> {
match curr_reg_id {
r if (RegisterARM64::Q0 as i32..=RegisterARM64::Q31 as i32).contains(&r)
|| (RegisterARM64::V0 as i32..=RegisterARM64::V31 as i32).contains(&r) =>
{
Ok(16)
}
_ => Err(uc_error::ARG),
}
}
#[cfg(feature = "arch_x86")]
fn value_size_x86(curr_reg_id: i32) -> Result<usize, uc_error> {
match curr_reg_id {
r if (RegisterX86::XMM0 as i32..=RegisterX86::XMM31 as i32).contains(&r) => Ok(16),
r if (RegisterX86::YMM0 as i32..=RegisterX86::YMM31 as i32).contains(&r) => Ok(32),
r if (RegisterX86::ZMM0 as i32..=RegisterX86::ZMM31 as i32).contains(&r) => Ok(64),
r if r == RegisterX86::GDTR as i32
|| r == RegisterX86::IDTR as i32
|| (RegisterX86::ST0 as i32..=RegisterX86::ST7 as i32).contains(&r) =>
{
Ok(10)
}
_ => Err(uc_error::ARG),
}
}
/// Read a signed 32-bit value from a register.
pub fn reg_read_i32<T: Into<i32>>(&self, regid: T) -> Result<i32, uc_error> {
let mut value: i32 = 0;
unsafe { ffi::uc_reg_read(self.get_handle(), regid.into(), &mut value as *mut i32 as _) }
.and(Ok(value))
}
/// Add a code hook.
pub fn add_code_hook<F: 'a>(
&mut self,
begin: u64,
end: u64,
callback: F,
) -> Result<UcHookId, uc_error>
where
F: FnMut(&mut Unicorn<D>, u64, u32) + 'a,
{
let mut hook_id = ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Rc::downgrade(&self.inner),
});
unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_id,
HookType::CODE,
ffi::code_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
begin,
end,
)
}
.and_then(|| {
let hook_id = UcHookId(hook_id);
self.inner_mut().hooks.push((hook_id, user_data));
Ok(hook_id)
})
}
/// Add a block hook.
pub fn add_block_hook<F: 'a>(
&mut self,
begin: u64,
end: u64,
callback: F,
) -> Result<UcHookId, uc_error>
where
F: FnMut(&mut Unicorn<D>, u64, u32),
{
let mut hook_id = ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Rc::downgrade(&self.inner),
});
unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_id,
HookType::BLOCK,
ffi::block_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
begin,
end,
)
}
.and_then(|| {
let hook_id = UcHookId(hook_id);
self.inner_mut().hooks.push((hook_id, user_data));
Ok(hook_id)
})
}
/// Add a memory hook.
pub fn add_mem_hook<F: 'a>(
&mut self,
hook_type: HookType,
begin: u64,
end: u64,
callback: F,
) -> Result<UcHookId, uc_error>
where
F: FnMut(&mut Unicorn<D>, MemType, u64, usize, i64) -> bool,
{
if !(HookType::MEM_ALL | HookType::MEM_READ_AFTER).contains(hook_type) {
return Err(uc_error::ARG);
}
let mut hook_id = ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Rc::downgrade(&self.inner),
});
unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_id,
hook_type,
ffi::mem_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
begin,
end,
)
}
.and_then(|| {
let hook_id = UcHookId(hook_id);
self.inner_mut().hooks.push((hook_id, user_data));
Ok(hook_id)
})
}
/// Add an interrupt hook.
pub fn add_intr_hook<F: 'a>(&mut self, callback: F) -> Result<UcHookId, uc_error>
where
F: FnMut(&mut Unicorn<D>, u32),
{
let mut hook_id = ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Rc::downgrade(&self.inner),
});
unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_id,
HookType::INTR,
ffi::intr_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
0,
0,
)
}
.and_then(|| {
let hook_id = UcHookId(hook_id);
self.inner_mut().hooks.push((hook_id, user_data));
Ok(hook_id)
})
}
/// Add hook for invalid instructions
pub fn add_insn_invalid_hook<F: 'a>(&mut self, callback: F) -> Result<UcHookId, uc_error>
where
F: FnMut(&mut Unicorn<D>) -> bool,
{
let mut hook_id = ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Rc::downgrade(&self.inner),
});
unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_id,
HookType::INSN_INVALID,
ffi::insn_invalid_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
0,
0,
)
}
.and_then(|| {
let hook_id = UcHookId(hook_id);
self.inner_mut().hooks.push((hook_id, user_data));
Ok(hook_id)
})
}
/// Add hook for x86 IN instruction.
#[cfg(feature = "arch_x86")]
pub fn add_insn_in_hook<F: 'a>(&mut self, callback: F) -> Result<UcHookId, uc_error>
where
F: FnMut(&mut Unicorn<D>, u32, usize) -> u32,
{
let mut hook_id = ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Rc::downgrade(&self.inner),
});
unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_id,
HookType::INSN,
ffi::insn_in_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
0,
0,
InsnX86::IN,
)
}
.and_then(|| {
let hook_id = UcHookId(hook_id);
self.inner_mut().hooks.push((hook_id, user_data));
Ok(hook_id)
})
}
/// Add hook for x86 OUT instruction.
#[cfg(feature = "arch_x86")]
pub fn add_insn_out_hook<F: 'a>(&mut self, callback: F) -> Result<UcHookId, uc_error>
where
F: FnMut(&mut Unicorn<D>, u32, usize, u32),
{
let mut hook_id = ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Rc::downgrade(&self.inner),
});
unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_id,
HookType::INSN,
ffi::insn_out_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
0,
0,
InsnX86::OUT,
)
}
.and_then(|| {
let hook_id = UcHookId(hook_id);
self.inner_mut().hooks.push((hook_id, user_data));
Ok(hook_id)
})
}
/// Add hook for x86 SYSCALL or SYSENTER.
#[cfg(feature = "arch_x86")]
pub fn add_insn_sys_hook<F>(
&mut self,
insn_type: InsnSysX86,
begin: u64,
end: u64,
callback: F,
) -> Result<UcHookId, uc_error>
where
F: FnMut(&mut Unicorn<D>) + 'a,
{
let mut hook_id = ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Rc::downgrade(&self.inner),
});
unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_id,
HookType::INSN,
ffi::insn_sys_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
begin,
end,
insn_type,
)
}
.and_then(|| {
let hook_id = UcHookId(hook_id);
self.inner_mut().hooks.push((hook_id, user_data));
Ok(hook_id)
})
}
pub fn add_tlb_hook<F>(
&mut self,
begin: u64,
end: u64,
callback: F,
) -> Result<UcHookId, uc_error>
where
F: FnMut(&mut Unicorn<D>, u64, MemType) -> Option<TlbEntry> + 'a,
{
let mut hook_id = ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Rc::downgrade(&self.inner),
});
unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_id,
HookType::TLB,
ffi::tlb_lookup_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
begin,
end,
)
}
.and_then(|| {
let hook_id = UcHookId(hook_id);
self.inner_mut().hooks.push((hook_id, user_data));
Ok(hook_id)
})
}
/// Remove a hook.
///
/// `hook_id` is the value returned by `add_*_hook` functions.
pub fn remove_hook(&mut self, hook_id: UcHookId) -> Result<(), uc_error> {
// drop the hook
let inner = self.inner_mut();
inner.hooks.retain(|(id, _)| id != &hook_id);
unsafe { ffi::uc_hook_del(inner.handle, hook_id.0) }.into()
}
/// Allocate and return an empty Unicorn context.
///
/// To be populated via `context_save`.
pub fn context_alloc(&self) -> Result<Context, uc_error> {
let mut empty_context: ffi::uc_context = ptr::null_mut();
unsafe { ffi::uc_context_alloc(self.get_handle(), &mut empty_context) }.and(Ok(Context {
context: empty_context,
}))
}
/// Save current Unicorn context to previously allocated Context struct.
pub fn context_save(&self, context: &mut Context) -> Result<(), uc_error> {
unsafe { ffi::uc_context_save(self.get_handle(), context.context) }.into()
}
/// Allocate and return a Context struct initialized with the current CPU context.
///
/// This can be used for fast rollbacks with `context_restore`.
/// In case of many non-concurrent context saves, use `context_alloc` and *_save
/// individually to avoid unnecessary allocations.
pub fn context_init(&self) -> Result<Context, uc_error> {
let mut new_context: ffi::uc_context = ptr::null_mut();
unsafe {
ffi::uc_context_alloc(self.get_handle(), &mut new_context).and_then(|| {
ffi::uc_context_save(self.get_handle(), new_context)
.and(Ok(Context {
context: new_context,
}))
.map_err(|e| {
ffi::uc_context_free(new_context);
e
})
})
}
}
/// Restore a previously saved Unicorn context.
///
/// Perform a quick rollback of the CPU context, including registers and some
/// internal metadata. Contexts may not be shared across engine instances with
/// differing arches or modes. Memory has to be restored manually, if needed.
pub fn context_restore(&self, context: &Context) -> Result<(), uc_error> {
unsafe { ffi::uc_context_restore(self.get_handle(), context.context) }.into()
}
/// Emulate machine code for a specified duration.
///
/// `begin` is the address where to start the emulation. The emulation stops if `until`
/// is hit. `timeout` specifies a duration in microseconds after which the emulation is
/// stopped (infinite execution if set to 0). `count` is the maximum number of instructions
/// to emulate (emulate all the available instructions if set to 0).
pub fn emu_start(
&mut self,
begin: u64,
until: u64,
timeout: u64,
count: usize,
) -> Result<(), uc_error> {
unsafe { ffi::uc_emu_start(self.get_handle(), begin, until, timeout, count as _) }.into()
}
/// Stop the emulation.
///
/// This is usually called from callback function in hooks.
/// NOTE: For now, this will stop the execution only after the current block.
pub fn emu_stop(&mut self) -> Result<(), uc_error> {
unsafe { ffi::uc_emu_stop(self.get_handle()).into() }
}
/// Query the internal status of the engine.
///
/// supported: `MODE`, `PAGE_SIZE`, `ARCH`
pub fn query(&self, query: Query) -> Result<usize, uc_error> {
let mut result: libc::size_t = Default::default();
unsafe { ffi::uc_query(self.get_handle(), query, &mut result) }.and(Ok(result))
}
/// Get the `i32` register value for the program counter for the specified architecture.
///
/// If an architecture is not compiled in, this function will return `uc_error::ARCH`.
#[inline]
fn arch_to_pc_register(arch: Arch) -> Result<i32, uc_error> {
match arch {
#[cfg(feature = "arch_x86")]
Arch::X86 => Ok(RegisterX86::RIP as i32),
#[cfg(feature = "arch_arm")]
Arch::ARM => Ok(RegisterARM::PC as i32),
#[cfg(feature = "arch_arm")]
Arch::ARM64 => Ok(RegisterARM64::PC as i32),
#[cfg(feature = "arch_mips")]
Arch::MIPS => Ok(RegisterMIPS::PC as i32),
#[cfg(feature = "arch_sparc")]
Arch::SPARC => Ok(RegisterSPARC::PC as i32),
#[cfg(feature = "arch_m68k")]
Arch::M68K => Ok(RegisterM68K::PC as i32),
#[cfg(feature = "arch_ppc")]
Arch::PPC => Ok(RegisterPPC::PC as i32),
#[cfg(feature = "arch_riscv")]
Arch::RISCV => Ok(RegisterRISCV::PC as i32),
#[cfg(feature = "arch_s390x")]
Arch::S390X => Ok(RegisterS390X::PC as i32),
#[cfg(feature = "arch_tricore")]
Arch::TRICORE => Ok(RegisterTRICORE::PC as i32),
// returns `uc_error::ARCH` for `Arch::MAX`, and any
// other architecture that are not compiled in
_ => Err(uc_error::ARCH),
}
}
/// Gets the current program counter for this `unicorn` instance.
#[inline]
pub fn pc_read(&self) -> Result<u64, uc_error> {
let arch = self.get_arch();
self.reg_read(Self::arch_to_pc_register(arch)?)
}
/// Sets the program counter for this `unicorn` instance.
#[inline]
pub fn set_pc(&mut self, value: u64) -> Result<(), uc_error> {
let arch = self.get_arch();
self.reg_write(Self::arch_to_pc_register(arch)?, value)
}
pub fn ctl_get_mode(&self) -> Result<Mode, uc_error> {
let mut result: i32 = Default::default();
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_READ!(ControlType::UC_CTL_UC_MODE),
&mut result,
)
}
.and_then(|| Ok(Mode::from_bits_truncate(result)))
}
pub fn ctl_get_page_size(&self) -> Result<u32, uc_error> {
let mut result: u32 = Default::default();
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_READ!(ControlType::UC_CTL_UC_PAGE_SIZE),
&mut result,
)
}
.and_then(|| Ok(result))
}
pub fn ctl_set_page_size(&self, page_size: u32) -> Result<(), uc_error> {
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_WRITE!(ControlType::UC_CTL_UC_PAGE_SIZE),
page_size,
)
}
.into()
}
pub fn ctl_get_arch(&self) -> Result<Arch, uc_error> {
let mut result: i32 = Default::default();
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_READ!(ControlType::UC_CTL_UC_ARCH),
&mut result,
)
}
.and_then(|| Arch::try_from(result as usize))
}
pub fn ctl_get_timeout(&self) -> Result<u64, uc_error> {
let mut result: u64 = Default::default();
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_READ!(ControlType::UC_CTL_UC_TIMEOUT),
&mut result,
)
}
.and(Ok(result))
}
pub fn ctl_exits_enable(&self) -> Result<(), uc_error> {
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_WRITE!(ControlType::UC_CTL_UC_USE_EXITS),
1,
)
}
.into()
}
pub fn ctl_exits_disable(&self) -> Result<(), uc_error> {
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_WRITE!(ControlType::UC_CTL_UC_USE_EXITS),
0,
)
}
.into()
}
pub fn ctl_get_exits_count(&self) -> Result<usize, uc_error> {
let mut result: libc::size_t = 0usize;
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_READ!(ControlType::UC_CTL_UC_EXITS_CNT),
&mut result,
)
}
.and(Ok(result))
}
pub fn ctl_get_exits(&self) -> Result<Vec<u64>, uc_error> {
let exits_count: libc::size_t = self.ctl_get_exits_count()?;
let mut exits: Vec<u64> = Vec::with_capacity(exits_count);
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_READ!(ControlType::UC_CTL_UC_EXITS),
exits.as_mut_ptr(),
exits_count,
)
}
.and_then(|| unsafe {
exits.set_len(exits_count);
Ok(exits)
})
}
pub fn ctl_set_exits(&self, exits: &[u64]) -> Result<(), uc_error> {
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_WRITE!(ControlType::UC_CTL_UC_EXITS),
exits.as_ptr(),
exits.len() as libc::size_t,
)
}
.into()
}
pub fn ctl_get_cpu_model(&self) -> Result<i32, uc_error> {
let mut result: i32 = Default::default();
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_READ!(ControlType::UC_CTL_CPU_MODEL),
&mut result,
)
}
.and(Ok(result))
}
pub fn ctl_set_cpu_model(&self, cpu_model: i32) -> Result<(), uc_error> {
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_WRITE!(ControlType::UC_CTL_CPU_MODEL),
cpu_model,
)
}
.into()
}
pub fn ctl_remove_cache(&self, address: u64, end: u64) -> Result<(), uc_error> {
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_WRITE!(ControlType::UC_CTL_TB_REMOVE_CACHE),
address,
end,
)
}
.into()
}
pub fn ctl_request_cache(
&self,
address: u64,
tb: &mut TranslationBlock,
) -> Result<(), uc_error> {
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_READ_WRITE!(ControlType::UC_CTL_TB_REQUEST_CACHE),
address,
tb,
)
}
.into()
}
pub fn ctl_flush_tb(&self) -> Result<(), uc_error> {
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_WRITE!(ControlType::UC_CTL_TB_FLUSH),
)
}
.into()
}
pub fn ctl_flush_tlb(&self) -> Result<(), uc_error> {
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_WRITE!(ControlType::UC_CTL_TLB_FLUSH),
)
}
.into()
}
pub fn ctl_context_mode(&self, mode: ContextMode) -> Result<(), uc_error> {
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_WRITE!(ControlType::UC_CTL_CONTEXT_MODE),
mode,
)
}
.into()
}
pub fn ctl_tlb_type(&self, t: TlbType) -> Result<(), uc_error> {
unsafe {
ffi::uc_ctl(
self.get_handle(),
UC_CTL_WRITE!(ControlType::UC_CTL_TLB_TYPE),
t as i32,
)
}
.into()
}
}