1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
//! Dedicated transformation types as the combination of primitives.
//!
//! Note that you may want to us these types over the corresponding type of
//! homogeneous transformation matrix because they are faster in most operations,
//! especially composition and inverse.
use crate::*;

use std::ops::*;

macro_rules! isometries {
    ($($ison:ident => ($mt:ident, $rt:ident, $vt:ident, $t:ident)),+) => {
        $(
        /// An Isometry, aka a "rigid body transformation".
        ///
        /// Defined as the combination of a rotation *and then* a translation.
        ///
        /// You may want to us this type over the corresponding type of
        /// homogeneous transformation matrix because it will be faster in most operations,
        /// especially composition and inverse.
        #[derive(Clone, Copy, Debug, PartialEq)]
        #[repr(C)]
        pub struct $ison {
            pub translation: $vt,
            pub rotation: $rt,
        }

        derive_default_identity!($ison);

        impl $ison {
            #[inline]
            pub const fn new(translation: $vt, rotation: $rt) -> Self {
                Self { translation, rotation }
            }

            #[inline]
            pub fn identity() -> Self {
                Self { rotation: $rt::identity(), translation: $vt::zero() }
            }

            /// Add a rotation *before* this isometry.
            ///
            /// This means the rotation will only affect the rotational
            /// part of this isometry, not the translational part.
            #[inline]
            pub fn prepend_rotation(&mut self, rotor: $rt) {
                self.rotation = rotor * self.rotation;
            }

            /// Add a rotation *after* this isometry.
            ///
            /// This means the rotation will affect both the rotational and
            /// translational parts of this isometry, since it is being applied
            /// 'after' this isometry's translational part.
            pub fn append_rotation(&mut self, rotor: $rt) {
                self.rotation = rotor * self.rotation;
                self.translation = rotor * self.translation;
            }

            /// Add a translation *before* this isometry.
            ///
            /// Doing so will mean that the translation being added will get
            /// transformed by this isometry's rotational part.
            #[inline]
            pub fn prepend_translation(&mut self, translation: $vt) {
                self.translation += self.rotation * translation;
            }

            /// Add a translation *after* this isometry.
            ///
            /// Doing so will mean that the translation being added will *not*
            /// transformed by this isometry's rotational part.
            #[inline]
            pub fn append_translation(&mut self, translation: $vt) {
                self.translation += translation;
            }

            /// Prepend transformation by another isometry.
            ///
            /// This means that the transformation being applied will take place
            /// *before* this isometry, i.e. both its translation and rotation will be
            /// rotated by this isometry's rotational part.
            #[inline]
            pub fn prepend_isometry(&mut self, other: Self) {
                *self = *self * other;
            }

            /// Append transformation by another isometry.
            ///
            /// This means that the transformation being applied will take place
            /// *after* this isometry, i.e. *this isometry's* translation and rotation will be
            /// rotated by the *other* isometry's rotational part.
            #[inline]
            pub fn append_isometry(&mut self, other: Self) {
                *self = other * *self;
            }

            #[inline]
            pub fn inverse(&mut self) {
                self.rotation.reverse();
                self.translation = self.rotation * (-self.translation);
            }

            #[inline]
            pub fn inversed(mut self) -> Self {
                self.inverse();
                self
            }

            #[inline]
            pub fn transform_vec(&self, mut vec: $vt) -> $vt {
                vec = self.rotation * vec;
                vec += self.translation;
                vec
            }

            #[inline]
            pub fn into_homogeneous_matrix(self) -> $mt {
                $mt::from_translation(self.translation)
                    * self.rotation.into_matrix().into_homogeneous()
            }
        }

        impl Mul<$ison> for $rt {
            type Output = $ison;
            #[inline]
            fn mul(self, mut iso: $ison) -> $ison {
                iso.append_rotation(self);
                iso
            }
        }

        impl Mul<$rt> for $ison {
            type Output = $ison;
            #[inline]
            fn mul(mut self, rotor: $rt) -> $ison {
                self.prepend_rotation(rotor);
                self
            }
        }

        impl Mul<$t> for $ison {
            type Output = Self;
            #[inline]
            fn mul(mut self, scalar: $t) -> $ison {
                self.translation *= scalar;
                self.rotation *= scalar;
                self
            }
        }

        impl Mul<$vt> for $ison {
            type Output = $vt;
            #[inline]
            fn mul(self, vec: $vt) -> $vt {
                self.transform_vec(vec)
            }
        }

        impl Mul<$ison> for $ison {
            type Output = Self;
            #[inline]
            fn mul(self, base: $ison) -> $ison {
                let trans = self.transform_vec(base.translation);
                let rot = self.rotation * base.rotation;
                $ison::new(trans, rot)
            }
        }

        impl Add<$ison> for $ison {
            type Output = Self;
            #[inline]
            fn add(mut self, other: $ison) -> $ison {
                self.translation += other.translation;
                self.rotation += other.rotation;
                self
            }
        }
        )+
    }
}

isometries!(
    Isometry2 => (Mat3, Rotor2, Vec2, f32),
    Isometry2x4 => (Mat3x4, Rotor2x4, Vec2x4, f32x4),
    Isometry2x8 => (Mat3x8, Rotor2x8, Vec2x8, f32x8),

    Isometry3 => (Mat4, Rotor3, Vec3, f32),
    Isometry3x4 => (Mat4x4, Rotor3x4, Vec3x4, f32x4),
    Isometry3x8 => (Mat4x8, Rotor3x8, Vec3x8, f32x8)
);

#[cfg(feature = "f64")]
isometries!(
    DIsometry2 => (DMat3, DRotor2, DVec2, f64),
    DIsometry2x2 => (DMat3x2, DRotor2x2, DVec2x2, f64x2),
    DIsometry2x4 => (DMat3x4, DRotor2x4, DVec2x4, f64x4),

    DIsometry3 => (DMat4, DRotor3, DVec3, f64),
    DIsometry3x2 => (DMat4x2, DRotor3x2, DVec3x2, f64x2),
    DIsometry3x4 => (DMat4x4, DRotor3x4, DVec3x4, f64x4)
);

macro_rules! similarities {
    ($($sn:ident => ($mt:ident, $rt:ident, $vt:ident, $t:ident)),+) => {
        $(
        /// A Similarity, i.e. an Isometry but with an added uniform scaling.
        ///
        /// Defined as a uniform scaling followed by a rotation followed by a translation.
        ///
        /// You may want to us this type over the corresponding type of
        /// homogeneous transformation matrix because it will be faster in most operations,
        /// especially composition and inverse.
        #[derive(Clone, Copy, Debug, PartialEq)]
        #[repr(C)]
        pub struct $sn {
            pub translation: $vt,
            pub rotation: $rt,
            pub scale: $t,
        }

        derive_default_identity!($sn);

        impl $sn {
            #[inline]
            pub const fn new(translation: $vt, rotation: $rt, scale: $t) -> Self {
                Self { translation, rotation, scale }
            }

            #[inline]
            pub fn identity() -> Self {
                Self { rotation: $rt::identity(), translation: $vt::zero(), scale: $t::splat(1.0) }
            }

            /// Add a scaling *before* this similarity.
            ///
            /// This means the scaling will only affect the scaling part
            /// of this similarity, not the translational part.
            #[inline]
            pub fn prepend_scaling(&mut self, scaling: $t) {
                self.scale *= scaling;
            }

            /// Add a scaling *after* this similarity.
            ///
            /// This means the scaling will affect both the scaling
            /// and translational parts of this similairty, since it is being
            /// applied *after* this similarity's translational part.
            #[inline]
            pub fn append_scaling(&mut self, scaling: $t) {
                self.scale *= scaling;
                self.translation *= scaling;
            }

            /// Add a rotation *before* this similarity.
            ///
            /// This means the rotation will only affect the rotational
            /// part of this similarity, not the translational part.
            #[inline]
            pub fn prepend_rotation(&mut self, rotor: $rt) {
                self.rotation = rotor * self.rotation;
            }

            /// Add a rotation *after* this similarity.
            ///
            /// This means the rotation will affect both the rotational and
            /// translational parts of this similarity, since it is being applied
            /// *after* this similarity's translational part.
            pub fn append_rotation(&mut self, rotor: $rt) {
                self.rotation = rotor * self.rotation;
                self.translation = rotor * self.translation;
            }

            /// Add a translation *before* this similarity.
            ///
            /// Doing so will mean that the translation being added will get
            /// transformed by this similarity's rotational and scaling parts.
            #[inline]
            pub fn prepend_translation(&mut self, translation: $vt) {
                self.translation += self.scale * self.rotation * translation;
            }

            /// Add a translation *after* this similarity.
            ///
            /// Doing so will mean that the translation being added will *not*
            /// transformed by this similarity's rotational or scaling parts.
            #[inline]
            pub fn append_translation(&mut self, translation: $vt) {
                self.translation += translation;
            }

            /// Prepend transformation by another similarity.
            ///
            /// This means that the transformation being applied will take place
            /// *before* this similarity, i.e. both its translation and rotation will be
            /// rotated by the other similarity's rotational part, and its translation
            /// will be scaled by the other similarity's scaling part.
            #[inline]
            pub fn prepend_similarity(&mut self, other: Self) {
                *self = *self * other;
            }

            /// Append transformation by another similarity.
            ///
            /// This means that the transformation being applied will take place
            /// *after* this similarity, i.e. *this similarity's* translation and rotation will be
            /// rotated by the *other* similarity's rotational part, and *this similarity's* translation
            /// will be scaled by the *other* similarity's scaling pat.
            #[inline]
            pub fn append_similarity(&mut self, other: Self) {
                *self = other * *self;
            }

            #[inline]
            pub fn inverse(&mut self) {
                self.rotation.reverse();
                self.translation = self.rotation * (-self.translation);
                self.scale = $t::splat(1.0) / self.scale;
            }

            #[inline]
            pub fn inversed(mut self) -> Self {
                self.inverse();
                self
            }

            #[inline]
            pub fn transform_vec(&self, mut vec: $vt) -> $vt {
                vec = self.rotation * vec;
                vec = self.scale * vec;
                vec += self.translation;
                vec
            }

            #[inline]
            pub fn into_homogeneous_matrix(self) -> $mt {
                $mt::from_translation(self.translation)
                    * self.rotation.into_matrix().into_homogeneous()
                    * $mt::from_scale(self.scale)
            }
        }

        impl Mul<$sn> for $rt {
            type Output = $sn;
            #[inline]
            fn mul(self, mut iso: $sn) -> $sn {
                iso.append_rotation(self);
                iso
            }
        }

        impl Mul<$rt> for $sn {
            type Output = $sn;
            #[inline]
            fn mul(mut self, rotor: $rt) -> $sn {
                self.prepend_rotation(rotor);
                self
            }
        }

        impl Mul<$t> for $sn {
            type Output = Self;
            #[inline]
            fn mul(mut self, scalar: $t) -> $sn {
                self.translation *= scalar;
                self.rotation *= scalar;
                self.scale *= scalar;
                self
            }
        }

        impl Mul<$vt> for $sn {
            type Output = $vt;
            #[inline]
            fn mul(self, vec: $vt) -> $vt {
                self.transform_vec(vec)
            }
        }

        impl Mul<$sn> for $sn {
            type Output = Self;
            #[inline]
            fn mul(self, base: $sn) -> $sn {
                let trans = self.transform_vec(base.translation);
                let rot = self.rotation * base.rotation;
                let scale = self.scale * base.scale;
                $sn::new(trans, rot, scale)
            }
        }

        impl Add<$sn> for $sn {
            type Output = Self;
            #[inline]
            fn add(mut self, other: $sn) -> $sn {
                self.translation += other.translation;
                self.rotation += other.rotation;
                self.scale += other.scale;
                self
            }
        }
        )+
    }
}

similarities!(
    Similarity2 => (Mat3, Rotor2, Vec2, f32),
    Similarity2x4 => (Mat3x4, Rotor2x4, Vec2x4, f32x4),
    Similarity2x8 => (Mat3x8, Rotor2x8, Vec2x8, f32x8),

    Similarity3 => (Mat4, Rotor3, Vec3, f32),
    Similarity3x4 => (Mat4x4, Rotor3x4, Vec3x4, f32x4),
    Similarity3x8 => (Mat4x8, Rotor3x8, Vec3x8, f32x8)
);

#[cfg(feature = "f64")]
similarities!(
    DSimilarity2 => (DMat3, DRotor2, DVec2, f64),
    DSimilarity2x2 => (DMat3x2, DRotor2x2, DVec2x2, f64x2),
    DSimilarity2x4 => (DMat3x4, DRotor2x4, DVec2x4, f64x4),

    DSimilarity3 => (DMat4, DRotor3, DVec3, f64),
    DSimilarity3x2 => (DMat4x2, DRotor3x2, DVec3x2, f64x2),
    DSimilarity3x4 => (DMat4x4, DRotor3x4, DVec3x4, f64x4)
);