1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
//! Projection matrices that are intended to be used when the base coordinate
//! system (i.e. the one used by the application code) is right-handed, with the
//! x-axis pointing right, y-axis pointing *down*, and z-axis pointing *into the
//! screen*.

use crate::mat::*;
use crate::vec::*;

/// Orthographic projection matrix for use with OpenGL.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// and the destination space is left-handed
/// and y-up, with Z (depth) clip extending from -1.0 (close) to 1.0 (far).
#[inline]
pub fn orthographic_gl(left: f32, right: f32, bottom: f32, top: f32, near: f32, far: f32) -> Mat4 {
    let rml = right - left;
    let rpl = right + left;
    let tmb = top - bottom;
    let tpb = top + bottom;
    let fmn = far - near;
    let fpn = far + near;
    Mat4::new(
        Vec4::new(2.0 / rml, 0.0, 0.0, 0.0),
        Vec4::new(0.0, -2.0 / tmb, 0.0, 0.0),
        Vec4::new(0.0, 0.0, -2.0 / fmn, 0.0),
        Vec4::new(-(rpl / rml), -(tpb / tmb), -(fpn / fmn), 1.0),
    )
}

/// Orthographic projection matrix for use with OpenGL.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// and the destination space is left-handed
/// and y-down, with Z (depth) clip extending from 0.0 (close) to 1.0 (far).
#[inline]
pub fn orthographic_vk(left: f32, right: f32, bottom: f32, top: f32, near: f32, far: f32) -> Mat4 {
    let rml = right - left;
    let rpl = right + left;
    let tmb = top - bottom;
    let tpb = top + bottom;
    let fmn = far - near;
    Mat4::new(
        Vec4::new(2.0 / rml, 0.0, 0.0, 0.0),
        Vec4::new(0.0, 2.0 / tmb, 0.0, 0.0),
        Vec4::new(0.0, 0.0, -1.0 / fmn, 0.0),
        Vec4::new(-(rpl / rml), -(tpb / tmb), -(near / fmn), 1.0),
    )
}

/// Orthographic projection matrix for use with OpenGL.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// and the destination space is left-handed
/// and y-up, with Z (depth) clip extending from 0.0 (close) to 1.0 (far).
#[inline]
pub fn orthographic_dx(left: f32, right: f32, bottom: f32, top: f32, near: f32, far: f32) -> Mat4 {
    let rml = right - left;
    let rpl = right + left;
    let tmb = top - bottom;
    let tpb = top + bottom;
    let fmn = far - near;
    Mat4::new(
        Vec4::new(2.0 / rml, 0.0, 0.0, 0.0),
        Vec4::new(0.0, -2.0 / tmb, 0.0, 0.0),
        Vec4::new(0.0, 0.0, -1.0 / fmn, 0.0),
        Vec4::new(-(rpl / rml), -(tpb / tmb), -(near / fmn), 1.0),
    )
}

/// Perspective projection matrix meant to be used with OpenGL.
///
/// * `vertical_fov` should be provided in radians.
/// * `aspect_ratio` should be the quotient `width / height`.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// (the standard computer graphics coordinate space) and the destination coordinate space is
/// left-handed and y-up with Z (depth) clip extending from -1.0 (close) to 1.0 (far).
#[inline]
pub fn perspective_gl(vertical_fov: f32, aspect_ratio: f32, z_near: f32, z_far: f32) -> Mat4 {
    let t = (vertical_fov / 2.0).tan();
    let sy = 1.0 / t;
    let sx = sy / aspect_ratio;
    let nmf = z_near - z_far;

    Mat4::new(
        Vec4::new(sx, 0.0, 0.0, 0.0),
        Vec4::new(0.0, -sy, 0.0, 0.0),
        Vec4::new(0.0, 0.0, (z_far + z_near) / nmf, -1.0),
        Vec4::new(0.0, 0.0, 2.0 * z_near * z_far / nmf, 0.0),
    )
}

/// Perspective projection matrix meant to be used with DirectX.
///
/// * `vertical_fov` should be provided in radians.
/// * `aspect_ratio` should be the quotient `width / height`.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// (the standard computer graphics coordinate space) and the destination coordinate space is
/// left-handed and y-up with Z (depth) clip extending from 0.0 (close) to 1.0 (far).
#[inline]
pub fn perspective_dx(vertical_fov: f32, aspect_ratio: f32, z_near: f32, z_far: f32) -> Mat4 {
    let t = (vertical_fov / 2.0).tan();
    let sy = 1.0 / t;
    let sx = sy / aspect_ratio;
    let nmf = z_near - z_far;

    Mat4::new(
        Vec4::new(sx, 0.0, 0.0, 0.0),
        Vec4::new(0.0, -sy, 0.0, 0.0),
        Vec4::new(0.0, 0.0, z_far / nmf, -1.0),
        Vec4::new(0.0, 0.0, z_near * z_far / nmf, 0.0),
    )
}

/// Perspective projection matrix meant to be used with Vulkan.
///
/// * `vertical_fov` should be provided in radians.
/// * `aspect_ratio` should be the quotient `width / height`.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// (the standard computer graphics coordinate space) and the destination coordinate space is
/// right-handed and y-down with Z (depth) clip extending from 0.0 (close) to 1.0 (far).
#[inline]
pub fn perspective_vk(vertical_fov: f32, aspect_ratio: f32, z_near: f32, z_far: f32) -> Mat4 {
    let t = (vertical_fov / 2.0).tan();
    let sy = 1.0 / t;
    let sx = sy / aspect_ratio;
    let nmf = z_near - z_far;

    Mat4::new(
        Vec4::new(sx, 0.0, 0.0, 0.0),
        Vec4::new(0.0, sy, 0.0, 0.0),
        Vec4::new(0.0, 0.0, z_far / nmf, -1.0),
        Vec4::new(0.0, 0.0, z_near * z_far / nmf, 0.0),
    )
}

/// Perspective projection matrix with infinite z-far plane meant to be used with OpenGL.
///
/// This is useful for extremely large scenes where having a far clip plane is extraneous anyway,
/// as allowing it to approach infinity it eliminates several approximate numerical computations
/// and so can improve z-fighting behavior.
///
/// * `vertical_fov` should be provided in radians.
/// * `aspect_ratio` should be the quotient `width / height`.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// (the standard computer graphics coordinate space) and the destination coordinate space is
/// left-handed and y-up with Z (depth) clip extending from -1.0 (close) to 1.0 (far).
#[inline]
pub fn perspective_infinite_z_gl(vertical_fov: f32, aspect_ratio: f32, z_near: f32) -> Mat4 {
    let t = (vertical_fov / 2.0).tan();
    let sy = 1.0 / t;
    let sx = sy / aspect_ratio;

    Mat4::new(
        Vec4::new(sx, 0.0, 0.0, 0.0),
        Vec4::new(0.0, -sy, 0.0, 0.0),
        Vec4::new(0.0, 0.0, -1.0, -1.0),
        Vec4::new(0.0, 0.0, -2.0 * z_near, 0.0),
    )
}

/// Perspective projection matrix with infinite z-far plane meant to be used with Vulkan.
///
/// This is useful for extremely large scenes where having a far clip plane is extraneous anyway,
/// as allowing it to approach infinity it eliminates several approximate numerical computations
/// and so can improve z-fighting behavior.
///
/// * `vertical_fov` should be provided in radians.
/// * `aspect_ratio` should be the quotient `width / height`.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// (the standard computer graphics coordinate space) and the destination coordinate space is
/// right-handed and y-down with Z (depth) clip extending from 0.0 (close) to 1.0 (far).
#[inline]
pub fn perspective_infinite_z_vk(vertical_fov: f32, aspect_ratio: f32, z_near: f32) -> Mat4 {
    let t = (vertical_fov / 2.0).tan();
    let sy = 1.0 / t;
    let sx = sy / aspect_ratio;

    Mat4::new(
        Vec4::new(sx, 0.0, 0.0, 0.0),
        Vec4::new(0.0, sy, 0.0, 0.0),
        Vec4::new(0.0, 0.0, -1.0, -1.0),
        Vec4::new(0.0, 0.0, -z_near, 0.0),
    )
}

/// Perspective projection matrix with infinite z-far plane meant to be used with DirectX.
///
/// This is useful for extremely large scenes where having a far clip plane is extraneous anyway,
/// as allowing it to approach infinity it eliminates several approximate numerical computations
/// and so can improve z-fighting behavior.
///
/// * `vertical_fov` should be provided in radians.
/// * `aspect_ratio` should be the quotient `width / height`.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// (the standard computer graphics coordinate space) and the destination coordinate space is
/// left-handed and y-up with Z (depth) clip extending from 0.0 (close) to 1.0 (far).
#[inline]
pub fn perspective_infinite_z_dx(vertical_fov: f32, aspect_ratio: f32, z_near: f32) -> Mat4 {
    let t = (vertical_fov / 2.0).tan();
    let sy = 1.0 / t;
    let sx = sy / aspect_ratio;

    Mat4::new(
        Vec4::new(sx, 0.0, 0.0, 0.0),
        Vec4::new(0.0, -sy, 0.0, 0.0),
        Vec4::new(0.0, 0.0, -1.0, -1.0),
        Vec4::new(0.0, 0.0, -z_near, 0.0),
    )
}

/// Perspective projection matrix with reversed z-axis meant to be used with DirectX or OpenGL.
///
/// Reversed-Z provides significantly better precision and therefore reduced z-fighting
/// for most depth situations, especially when a floating-point depth buffer is used. You'll want to use
/// a reversed depth comparison function and depth clear value when using this projection.
///
/// * `vertical_fov` should be provided in radians.
/// * `aspect_ratio` should be the quotient `width / height`.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// (the standard computer graphics coordinate space) and the destination coordinate space is
/// left-handed and y-up with Z (depth) clip extending from 0.0 (close) to 1.0 (far).
///
/// **Note that in order for this to work properly with OpenGL, you'll need to use the `gl_arb_clip_control` extension
/// and set the z clip from 0.0 to 1.0 rather than the default -1.0 to 1.0**
#[inline]
pub fn perspective_reversed_z_dx_gl(
    vertical_fov: f32,
    aspect_ratio: f32,
    z_near: f32,
    z_far: f32,
) -> Mat4 {
    let t = (vertical_fov / 2.0).tan();
    let sy = 1.0 / t;
    let sx = sy / aspect_ratio;
    let nmf = z_near - z_far;

    Mat4::new(
        Vec4::new(sx, 0.0, 0.0, 0.0),
        Vec4::new(0.0, -sy, 0.0, 0.0),
        Vec4::new(0.0, 0.0, -z_far / nmf - 1.0, -1.0),
        Vec4::new(0.0, 0.0, -z_near * z_far / nmf, 0.0),
    )
}

/// Perspective projection matrix with reversed z-axis meant to be used with Vulkan.
///
/// Reversed-Z provides significantly better precision and therefore reduced z-fighting
/// for most depth situations, especially when a floating-point depth buffer is used. You'll want to use
/// a reversed depth comparison function and depth clear value when using this projection.
///
/// * `vertical_fov` should be provided in radians.
/// * `aspect_ratio` should be the quotient `width / height`.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// (the standard computer graphics coordinate space) and the destination coordinate space is
/// right-handed and y-down with Z (depth) clip extending from 0.0 (close) to 1.0 (far).
#[inline]
pub fn perspective_reversed_z_vk(
    vertical_fov: f32,
    aspect_ratio: f32,
    z_near: f32,
    z_far: f32,
) -> Mat4 {
    let t = (vertical_fov / 2.0).tan();
    let sy = 1.0 / t;
    let sx = sy / aspect_ratio;
    let nmf = z_near - z_far;

    Mat4::new(
        Vec4::new(sx, 0.0, 0.0, 0.0),
        Vec4::new(0.0, sy, 0.0, 0.0),
        Vec4::new(0.0, 0.0, z_far / nmf, -1.0),
        Vec4::new(0.0, 0.0, -z_near * z_far / nmf, 0.0),
    )
}

/// Perspective projection matrix with reversed and infinite z-axis meant to be used with OpenGL or DirectX.
///
/// Reversed-Z provides significantly better precision and therefore reduced z-fighting
/// for most depth situations, especially when a floating-point depth buffer is used. You'll want to use
/// a reversed depth comparison function and depth clear value when using this projection.
///
/// Infinte-Z is useful for extremely large scenes where having a far clip plane is extraneous anyway,
/// as allowing it to approach infinity it eliminates several approximate numerical computations
/// and so can improve z-fighting behavior.
///
/// Combining them gives the best of both worlds for large scenes.
///
/// * `vertical_fov` should be provided in radians.
/// * `aspect_ratio` should be the quotient `width / height`.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// (the standard computer graphics coordinate space) and the destination coordinate space is
/// left-handed and y-up with Z (depth) clip extending from 0.0 (close) to 1.0 (far).
///
/// **Note that in order for this to work properly with OpenGL, you'll need to use the `gl_arb_clip_control` extension
/// and set the z clip from 0.0 to 1.0 rather than the default -1.0 to 1.0**
#[inline]
pub fn perspective_reversed_infinite_z_dx_gl(
    vertical_fov: f32,
    aspect_ratio: f32,
    z_near: f32,
) -> Mat4 {
    let t = (vertical_fov / 2.0).tan();
    let sy = 1.0 / t;
    let sx = sy / aspect_ratio;

    Mat4::new(
        Vec4::new(sx, 0.0, 0.0, 0.0),
        Vec4::new(0.0, -sy, 0.0, 0.0),
        Vec4::new(0.0, 0.0, 0.0, -1.0),
        Vec4::new(0.0, 0.0, z_near, 0.0),
    )
}

/// Perspective projection matrix with reversed and infinite z-axis meant to be used with Vulkan.
///
/// Reversed-Z provides significantly better precision and therefore reduced z-fighting
/// for most depth situations, especially when a floating-point depth buffer is used. You'll want to use
/// a reversed depth comparison function and depth clear value when using this projection.
///
/// Infinte-Z is useful for extremely large scenes where having a far clip plane is extraneous anyway,
/// as allowing it to approach infinity it eliminates several approximate numerical computations
/// and so can improve z-fighting behavior.
///
/// Combining them gives the best of both worlds for large scenes.
///
/// * `vertical_fov` should be provided in radians.
/// * `aspect_ratio` should be the quotient `width / height`.
///
/// This matrix is meant to be used when the source coordinate space is right-handed and y-down
/// (the standard computer graphics coordinate space) and the destination coordinate space is
/// right-handed and y-down with Z (depth) clip extending from 0.0 (close) to 1.0 (far).
#[inline]
pub fn perspective_reversed_infinite_z_vk(
    vertical_fov: f32,
    aspect_ratio: f32,
    z_near: f32,
) -> Mat4 {
    let t = (vertical_fov / 2.0).tan();
    let sy = 1.0 / t;
    let sx = sy / aspect_ratio;

    Mat4::new(
        Vec4::new(sx, 0.0, 0.0, 0.0),
        Vec4::new(0.0, sy, 0.0, 0.0),
        Vec4::new(0.0, 0.0, 0.0, -1.0),
        Vec4::new(0.0, 0.0, z_near, 0.0),
    )
}