1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
//! Bivectors, i.e. oriented areas.
//!
//! A bivector is an *oriented area*, and is equivalent
//! to the result of the exterior (wedge) product of two vectors, i.e.
//! `u ∧ v`. This means it is the *oriented area* of the parallelogram
//! created by attaching two vectors and then extending them into a parallelogram.
//!
//! This may be hard to visualize at first, but bivectors are as fundamental as vectors. If vectors
//! are a representation of *lines*, then bivectors are a representation of *planes*.
//!
//! A normalized bivector can be thought of as representing a plane of rotation and the *direction of rotation*
//! inside that plane such that a *positive* rotation follows the orientation of the bivector. When
//! you obtain a bivector by taking the exterior product of two vectors, the positive direction of rotation
//! is defined as the one that *brings the first vector closer to the second*. For example, a bivector
//! created by taking the exterior product `x ∧ y` of the x and y basis vectors will create a unit
//! bivector that represents the xy plane, with orientation such that a positive rotation of `x` inside
//! the plane would bring `x` closer to `y`. This is why positive rotation is generally defined as
//! "counter clockwise" in 2d, since such a rotation brings `x` to `y`.
//!
//! Much like vectors can be represented as a linear combination of *basis vectors*, i.e.
//! a vector "component representation," bivectors can be represented as a linear combination
//! of *basis bivectors*. If the basis vectors are the unit vectors in the direction of each
//! canonical axis of a space, then the basis bivectors are the *unit area planes* in each of the
//! canonical planes.
//!
//! In 2d, there is only one basis plane, the xy plane, which represents all of 2d space. As such, in 2d
//! there is only *one* basis bivector, while there are *two* basis vectors. This means that a 2d bivector
//! has only one component.
//!
//! In 3d, there are three basis planes, the xy plane, the xz plane, and the yz plane, which are respectively
//! the planes parallel to those combinations of the x, y, and z basis vectors. Therefore, a 3d bivector has
//! three components, each of which represents the *projected area* of that bivector onto one of the three
//! basis bivectors. This is analogous to how vector components represent the *projected length* of that vector
//! onto each unit vector.
use wide::f32x4;

use crate::util::*;
use crate::vec::*;

use std::ops::*;

macro_rules! bivec2s {
    ($(($bn:ident) => $t:ident),+) => {
        $(
        /// A bivector in 2d space.
        ///
        /// Since in 2d there is only one plane in the whole of 2d space, a 2d bivector
        /// has only one component.
        ///
        /// Please see the module level documentation for more information on bivectors generally!
        #[derive(Clone, Copy, Debug, Default)]
        #[repr(C)]
        pub struct $bn {
            pub xy: $t
        }

        impl $bn {
            #[inline]
            pub fn new(xy: $t) -> Self {
                Self {
                    xy
                }
            }

            #[inline]
            pub fn zero() -> Self {
                Self::new($t::from(0.0))
            }

            #[inline]
            pub fn unit_xy() -> Self {
                Self::new($t::from(1.0))
            }

            #[inline]
            pub fn mag_sq(&self) -> $t {
                self.xy * self.xy
            }

            #[inline]
            pub fn mag(&self) -> $t {
                self.mag_sq().sqrt()
            }

            #[inline]
            pub fn normalize(&mut self) {
                let mag = self.mag();
                self.xy /= mag;
            }

            #[inline]
            pub fn normalized(&self) -> Self {
                let mut r = self.clone();
                r.normalize();
                r
            }

            #[inline]
            pub fn layout() -> alloc::alloc::Layout {
                alloc::alloc::Layout::from_size_align(std::mem::size_of::<Self>(), std::mem::align_of::<$t>()).unwrap()
            }

             #[inline]
            pub fn as_slice(&self) -> &[$t] {
                // This is safe because we are statically bounding our slices to the size of these
                // vectors
                unsafe {
                    std::slice::from_raw_parts(self as *const $bn as *const $t, 1)
                }
            }


            #[inline]
            pub fn as_byte_slice(&self) -> &[u8] {
                // This is safe because we are statically bounding our slices to the size of these
                // vectors
                unsafe {
                    std::slice::from_raw_parts(self as *const $bn as *const u8, std::mem::size_of::<$t>())
                }
            }

            #[inline]
            pub fn as_mut_slice(&mut self) -> &mut [$t] {
                // This is safe because we are statically bounding our slices to the size of these
                // vectors
                unsafe {
                    std::slice::from_raw_parts_mut(self as *mut $bn as *mut $t, 1)
                }
            }

            #[inline]
            pub fn as_mut_byte_slice(&mut self) -> &mut [u8] {
                // This is safe because we are statically bounding our slices to the size of these
                // vectors
                unsafe {
                    std::slice::from_raw_parts_mut(self as *mut $bn as *mut u8, std::mem::size_of::<$t>())
                }
            }

            /// Returns a constant unsafe pointer to the underlying data in the underlying type.
            /// This function is safe because all types here are repr(C) and can be represented
            /// as their underlying type.
            ///
            /// # Safety
            ///
            /// It is up to the caller to correctly use this pointer and its bounds.
            #[inline]
            pub fn as_ptr(&self) -> *const $t {
                self as *const $bn as *const $t
            }

            /// Returns a mutable unsafe pointer to the underlying data in the underlying type.
            /// This function is safe because all types here are repr(C) and can be represented
            /// as their underlying type.
            ///
            /// # Safety
            ///
            /// It is up to the caller to correctly use this pointer and its bounds.
            #[inline]
            pub fn as_mut_ptr(&mut self) -> *mut $t {
                self as *mut $bn as *mut $t
            }
        }

        impl EqualsEps for $bn {
            fn eq_eps(self, other: Self) -> bool {
                self.xy.eq_eps(other.xy)
            }
        }

        impl Add for $bn {
            type Output = Self;
            #[inline]
            fn add(mut self, rhs: $bn) -> Self {
                self += rhs;
                self
            }
        }

        impl AddAssign for $bn {
            #[inline]
            fn add_assign(&mut self, rhs: $bn) {
                self.xy += rhs.xy;
            }
        }

        impl Sub for $bn {
            type Output = Self;
            #[inline]
            fn sub(mut self, rhs: $bn) -> Self {
                self -= rhs;
                self
            }
        }

        impl SubAssign for $bn {
            #[inline]
            fn sub_assign(&mut self, rhs: $bn) {
                self.xy -= rhs.xy;
            }
        }

        impl Mul for $bn {
            type Output = Self;
            #[inline]
            fn mul(mut self, rhs: $bn) -> Self {
                self *= rhs;
                self
            }
        }

        impl Mul<$bn> for $t {
            type Output = $bn;
            #[inline]
            fn mul(self, mut rhs: $bn) -> $bn {
                rhs *= self;
                rhs
            }
        }

        impl Mul<$t> for $bn {
            type Output = Self;
            #[inline]
            fn mul(mut self, rhs: $t) -> Self {
                self *= rhs;
                self
            }
        }

        impl MulAssign for $bn {
            #[inline]
            fn mul_assign(&mut self, rhs: Self) {
                self.xy *= rhs.xy;
            }
        }

        impl MulAssign<$t> for $bn {
            #[inline]
            fn mul_assign(&mut self, rhs: $t) {
                self.xy *= rhs;
            }
        }

        impl Div for $bn {
            type Output = Self;
            #[inline]
            fn div(mut self, rhs: $bn) -> Self {
                self /= rhs;
                self
            }
        }

        impl Div<$t> for $bn {
            type Output = $bn;
            #[inline]
            fn div(mut self, rhs: $t) -> $bn {
                self.xy /= rhs;
                self
            }
        }

        impl DivAssign for $bn {
            #[inline]
            fn div_assign(&mut self, rhs: $bn) {
                self.xy /= rhs.xy;
            }
        }

        impl DivAssign<$t> for $bn {
            #[inline]
            fn div_assign(&mut self, rhs: $t) {
                self.xy /= rhs;
            }
        }

        impl Neg for $bn {
            type Output = Self;
            #[inline]
            fn neg(mut self) -> Self {
                self.xy = -self.xy;
                self
            }
        }
        )+
    }
}

bivec2s!((Bivec2) => f32, (WBivec2) => f32x4);

macro_rules! bivec3s {
    ($($bn:ident => ($vt:ident, $t:ident)),+) => {
        $(
        /// A bivector in 3d space.
        ///
        /// In 3d, a bivector has 3 components, each one representing the signed *projected area* of the bivector
        /// onto one of the 3 *basis bivectors*, which can be thought of as corresponding to each of hte
        /// three basis planes. This is analogous to the components of a 3d vector, which correspond to the
        /// *projected length* of the vector onto the three basis *vectors. Since in 3d, there are three
        /// components for both vectors and bivectors, 3d bivectors have been historically confused with
        /// 3d vectors quite a lot.
        ///
        /// Please see the module level documentation for more information on bivectors generally!
        #[derive(Clone, Copy, Debug, Default)]
        #[repr(C)]
        pub struct $bn {
            pub xy: $t,
            pub xz: $t,
            pub yz: $t,
        }

        impl EqualsEps for $bn {
            fn eq_eps(self, other: Self) -> bool {
                self.xy.eq_eps(other.xy) && self.xz.eq_eps(other.xz) && self.yz.eq_eps(other.yz)
            }
        }

        impl $bn {
            #[inline]
            pub fn new(xy: $t, xz: $t, yz: $t) -> Self {
                Self {
                    xy, xz, yz
                }
            }

            #[inline]
            pub fn zero() -> Self {
                Self::new($t::from(0.0), $t::from(0.0), $t::from(0.0))
            }

            /// Create the bivector which represents the same plane of rotation as a given
            /// normalized 'axis vector'
            #[inline]
            pub fn from_normalized_axis(v: $vt) -> Self {
                Self::new(v.z, v.y, v.x)
            }

            #[inline]
            pub fn unit_xy() -> Self {
                Self::new($t::from(1.0), $t::from(0.0), $t::from(0.0))
            }

            #[inline]
            pub fn unit_xz() -> Self {
                Self::new($t::from(0.0), $t::from(1.0), $t::from(0.0))
            }

            #[inline]
            pub fn unit_yz() -> Self {
                Self::new($t::from(0.0), $t::from(0.0), $t::from(1.0))
            }

            #[inline]
            pub fn mag_sq(&self) -> $t {
                self.xy.mul_add(self.xy, self.xz.mul_add(self.xz, self.yz * self.yz))
            }

            #[inline]
            pub fn mag(&self) -> $t {
                self.mag_sq().sqrt()
            }

            #[inline]
            pub fn normalize(&mut self) {
                let mag = self.mag();
                self.xy /= mag;
                self.xz /= mag;
                self.yz /= mag;
            }

            #[inline]
            pub fn normalized(&self) -> Self {
                let mut r = self.clone();
                r.normalize();
                r
            }

            #[inline]
            pub fn layout() -> alloc::alloc::Layout {
                alloc::alloc::Layout::from_size_align(std::mem::size_of::<Self>(), std::mem::align_of::<$t>()).unwrap()
            }

             #[inline]
            pub fn as_slice(&self) -> &[$t] {
                // This is safe because we are statically bounding our slices to the size of these
                // vectors
                unsafe {
                    std::slice::from_raw_parts(self as *const $bn as *const $t, 3)
                }
            }


            #[inline]
            pub fn as_byte_slice(&self) -> &[u8] {
                // This is safe because we are statically bounding our slices to the size of these
                // vectors
                unsafe {
                    std::slice::from_raw_parts(self as *const $bn as *const u8, 3 * std::mem::size_of::<$t>())
                }
            }

            #[inline]
            pub fn as_mut_slice(&mut self) -> &mut [$t] {
                // This is safe because we are statically bounding our slices to the size of these
                // vectors
                unsafe {
                    std::slice::from_raw_parts_mut(self as *mut $bn as *mut $t, 3)
                }
            }

            #[inline]
            pub fn as_mut_byte_slice(&mut self) -> &mut [u8] {
                // This is safe because we are statically bounding our slices to the size of these
                // vectors
                unsafe {
                    std::slice::from_raw_parts_mut(self as *mut $bn as *mut u8, 3 * std::mem::size_of::<$t>())
                }
            }

            /// Returns a constant unsafe pointer to the underlying data in the underlying type.
            /// This function is safe because all types here are repr(C) and can be represented
            /// as their underlying type.
            ///
            /// # Safety
            ///
            /// It is up to the caller to correctly use this pointer and its bounds.
            #[inline]
            pub fn as_ptr(&self) -> *const $t {
                self as *const $bn as *const $t
            }

            /// Returns a mutable unsafe pointer to the underlying data in the underlying type.
            /// This function is safe because all types here are repr(C) and can be represented
            /// as their underlying type.
            ///
            /// # Safety
            ///
            /// It is up to the caller to correctly use this pointer and its bounds.
            #[inline]
            pub fn as_mut_ptr(&mut self) -> *mut $t {
                self as *mut $bn as *mut $t
            }
        }

        impl Add for $bn {
            type Output = Self;
            #[inline]
            fn add(mut self, rhs: $bn) -> Self {
                self += rhs;
                self
            }
        }

        impl AddAssign for $bn {
            #[inline]
            fn add_assign(&mut self, rhs: $bn) {
                self.xy += rhs.xy;
                self.xz += rhs.xz;
                self.yz += rhs.yz;
            }
        }

        impl Sub for $bn {
            type Output = Self;
            #[inline]
            fn sub(mut self, rhs: $bn) -> Self {
                self -= rhs;
                self
            }
        }

        impl SubAssign for $bn {
            #[inline]
            fn sub_assign(&mut self, rhs: $bn) {
                self.xy -= rhs.xy;
                self.xz -= rhs.xz;
                self.yz -= rhs.yz;
            }
        }

        impl Mul for $bn {
            type Output = Self;
            #[inline]
            fn mul(mut self, rhs: $bn) -> Self {
                self *= rhs;
                self
            }
        }

        impl Mul<$bn> for $t {
            type Output = $bn;
            #[inline]
            fn mul(self, mut rhs: $bn) -> $bn {
                rhs *= self;
                rhs
            }
        }

        impl Mul<$t> for $bn {
            type Output = Self;
            #[inline]
            fn mul(mut self, rhs: $t) -> Self {
                self *= rhs;
                self
            }
        }

        impl MulAssign for $bn {
            #[inline]
            fn mul_assign(&mut self, rhs: Self) {
                self.xy *= rhs.xy;
                self.xz *= rhs.xz;
                self.yz *= rhs.yz;
            }
        }

        impl MulAssign<$t> for $bn {
            #[inline]
            fn mul_assign(&mut self, rhs: $t) {
                self.xy *= rhs;
                self.xz *= rhs;
                self.yz *= rhs;
            }
        }

        impl Div for $bn {
            type Output = Self;
            #[inline]
            fn div(mut self, rhs: $bn) -> Self {
                self /= rhs;
                self
            }
        }

        impl Div<$t> for $bn {
            type Output = $bn;
            #[inline]
            fn div(mut self, rhs: $t) -> $bn {
                self.xy /= rhs;
                self
            }
        }

        impl DivAssign for $bn {
            #[inline]
            fn div_assign(&mut self, rhs: $bn) {
                self.xy /= rhs.xy;
                self.xz /= rhs.xz;
                self.yz /= rhs.yz;
            }
        }

        impl DivAssign<$t> for $bn {
            #[inline]
            fn div_assign(&mut self, rhs: $t) {
                self.xy /= rhs;
                self.xz /= rhs;
                self.yz /= rhs;
            }
        }

        impl Neg for $bn {
            type Output = Self;
            #[inline]
            fn neg(mut self) -> Self {
                self.xy = -self.xy;
                self.xz = -self.xz;
                self.yz = -self.yz;
                self
            }
        }
        )+
    }
}

bivec3s!(Bivec3 => (Vec3, f32), WBivec3 => (Wec3, f32x4));