1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use crate::util::{byte_to_ascii_hex_lower, parse_byte_from_ascii_str_at};
use crate::GuidFromStrError;
use core::fmt::{self, Display, Formatter};
use core::str::{self, FromStr};

#[cfg(feature = "serde")]
use {
    serde::de::{self, Visitor},
    serde::{Deserialize, Deserializer, Serialize, Serializer},
};

#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};

/// Globally-unique identifier.
///
/// The format is defined in [RFC 4122]. However, unlike "normal" UUIDs
/// (such as those provided by the [`uuid`] crate), the first three
/// fields are little-endian. See also [Appendix A] of the UEFI
/// Specification.
///
/// This type is 4-byte aligned. The UEFI Specification says the GUID
/// type should be 8-byte aligned, but most C implementations have
/// 4-byte alignment, so we do the same here for compatibility.
///
/// [Appendix A]: https://uefi.org/specs/UEFI/2.10/Apx_A_GUID_and_Time_Formats.html
/// [RFC 4122]: https://datatracker.ietf.org/doc/html/rfc4122
/// [`uuid`]: https://docs.rs/uuid/latest/uuid
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
#[cfg_attr(feature = "bytemuck", derive(Pod, Zeroable))]
#[repr(C)]
pub struct Guid {
    // Use `u32` rather than `[u8; 4]` here so that the natural
    // alignment of the struct is four bytes. This is better for the end
    // user than setting `repr(align(4))` because it doesn't prevent use
    // of the type in a `repr(packed)` struct. For more discussion, see
    // https://github.com/rust-lang/rfcs/pull/1358#issuecomment-217582887
    time_low: u32,
    time_mid: [u8; 2],
    time_high_and_version: [u8; 2],
    clock_seq_high_and_reserved: u8,
    clock_seq_low: u8,
    node: [u8; 6],
}

impl Guid {
    /// GUID with all fields set to zero.
    pub const ZERO: Self = Self {
        time_low: 0,
        time_mid: [0, 0],
        time_high_and_version: [0, 0],
        clock_seq_high_and_reserved: 0,
        clock_seq_low: 0,
        node: [0; 6],
    };

    /// Create a new GUID.
    #[must_use]
    pub const fn new(
        time_low: [u8; 4],
        time_mid: [u8; 2],
        time_high_and_version: [u8; 2],
        clock_seq_high_and_reserved: u8,
        clock_seq_low: u8,
        node: [u8; 6],
    ) -> Self {
        Self {
            time_low: u32::from_ne_bytes([
                time_low[0],
                time_low[1],
                time_low[2],
                time_low[3],
            ]),
            time_mid: [time_mid[0], time_mid[1]],
            time_high_and_version: [
                time_high_and_version[0],
                time_high_and_version[1],
            ],
            clock_seq_high_and_reserved,
            clock_seq_low,
            node,
        }
    }

    /// Create a version 4 GUID from provided random bytes.
    ///
    /// See [RFC 4122 section 4.4][rfc] for the definition of a version
    /// 4 GUID.
    ///
    /// This constructor does not itself generate random bytes, but
    /// instead expects the caller to provide suitably random bytes.
    ///
    /// # Example
    ///
    /// ```
    /// use uguid::{Guid, Variant};
    ///
    /// let guid = Guid::from_random_bytes([
    ///     104, 192, 95, 215, 120, 33, 249, 1, 102, 21, 171, 84, 233, 204, 68, 176,
    /// ]);
    /// assert_eq!(guid.variant(), Variant::Rfc4122);
    /// assert_eq!(guid.version(), 4);
    /// ```
    ///
    /// [rfc]: https://datatracker.ietf.org/doc/html/rfc4122#section-4.4
    #[must_use]
    pub const fn from_random_bytes(mut random_bytes: [u8; 16]) -> Self {
        // Set the variant in byte 8: set bit 7, clear bit 6.
        random_bytes[8] &= 0b1011_1111;
        random_bytes[8] |= 0b1000_0000;
        // Set the version in byte 7: set the most-significant-nibble to 4.
        random_bytes[7] &= 0b0000_1111;
        random_bytes[7] |= 0b0100_1111;

        Self::from_bytes(random_bytes)
    }

    /// True if all bits are zero, false otherwise.
    ///
    /// # Example
    ///
    /// ```
    /// use uguid::guid;
    ///
    /// assert!(guid!("00000000-0000-0000-0000-000000000000").is_zero());
    /// assert!(!guid!("308bbc16-a308-47e8-8977-5e5646c5291f").is_zero());
    /// ```
    #[must_use]
    pub const fn is_zero(self) -> bool {
        let b = self.to_bytes();
        b[0] == 0
            && b[1] == 0
            && b[2] == 0
            && b[3] == 0
            && b[4] == 0
            && b[5] == 0
            && b[6] == 0
            && b[7] == 0
            && b[8] == 0
            && b[9] == 0
            && b[10] == 0
            && b[11] == 0
            && b[12] == 0
            && b[13] == 0
            && b[14] == 0
            && b[15] == 0
    }

    /// The little-endian low field of the timestamp.
    #[must_use]
    pub const fn time_low(self) -> [u8; 4] {
        self.time_low.to_ne_bytes()
    }

    /// The little-endian middle field of the timestamp.
    #[must_use]
    pub const fn time_mid(self) -> [u8; 2] {
        self.time_mid
    }

    /// The little-endian high field of the timestamp multiplexed with
    /// the version number.
    #[must_use]
    pub const fn time_high_and_version(self) -> [u8; 2] {
        self.time_high_and_version
    }

    /// The high field of the clock sequence multiplexed with the
    /// variant.
    #[must_use]
    pub const fn clock_seq_high_and_reserved(self) -> u8 {
        self.clock_seq_high_and_reserved
    }

    /// The low field of the clock sequence.
    #[must_use]
    pub const fn clock_seq_low(self) -> u8 {
        self.clock_seq_low
    }

    /// The spatially unique node identifier.
    #[must_use]
    pub const fn node(self) -> [u8; 6] {
        self.node
    }

    /// Get the GUID variant.
    ///
    /// # Example
    ///
    /// ```
    /// use uguid::{guid, Variant};
    ///
    /// assert_eq!(
    ///     guid!("308bbc16-a308-47e8-8977-5e5646c5291f").variant(),
    ///     Variant::Rfc4122
    /// );
    /// ```
    #[must_use]
    pub const fn variant(self) -> Variant {
        // Get the 3 most significant bits of `clock_seq_high_and_reserved`.
        let bits = (self.clock_seq_high_and_reserved & 0b1110_0000) >> 5;

        if (bits & 0b100) == 0 {
            Variant::ReservedNcs
        } else if (bits & 0b010) == 0 {
            Variant::Rfc4122
        } else if (bits & 0b001) == 0 {
            Variant::ReservedMicrosoft
        } else {
            Variant::ReservedFuture
        }
    }

    /// Get the GUID version. This is a sub-type of the variant as
    /// defined in [RFC4122].
    ///
    /// [RFC4122]: https://datatracker.ietf.org/doc/html/rfc4122#section-4.1.3
    ///
    /// # Example
    ///
    /// ```
    /// use uguid::guid;
    ///
    /// assert_eq!(guid!("308bbc16-a308-47e8-8977-5e5646c5291f").version(), 4);
    /// ```
    #[must_use]
    pub const fn version(self) -> u8 {
        (self.time_high_and_version[1] & 0b1111_0000) >> 4
    }

    /// Parse a GUID from a string.
    ///
    /// This is functionally the same as [`Self::from_str`], but is
    /// exposed separately to provide a `const` method for parsing.
    pub const fn try_parse(s: &str) -> Result<Self, GuidFromStrError> {
        // Treat input as ASCII.
        let s = s.as_bytes();

        if s.len() != 36 {
            return Err(GuidFromStrError::Length);
        }

        let sep = b'-';
        if s[8] != sep {
            return Err(GuidFromStrError::Separator(8));
        }
        if s[13] != sep {
            return Err(GuidFromStrError::Separator(13));
        }
        if s[18] != sep {
            return Err(GuidFromStrError::Separator(18));
        }
        if s[23] != sep {
            return Err(GuidFromStrError::Separator(23));
        }

        Ok(Self::from_bytes([
            mtry!(parse_byte_from_ascii_str_at(s, 6)),
            mtry!(parse_byte_from_ascii_str_at(s, 4)),
            mtry!(parse_byte_from_ascii_str_at(s, 2)),
            mtry!(parse_byte_from_ascii_str_at(s, 0)),
            mtry!(parse_byte_from_ascii_str_at(s, 11)),
            mtry!(parse_byte_from_ascii_str_at(s, 9)),
            mtry!(parse_byte_from_ascii_str_at(s, 16)),
            mtry!(parse_byte_from_ascii_str_at(s, 14)),
            mtry!(parse_byte_from_ascii_str_at(s, 19)),
            mtry!(parse_byte_from_ascii_str_at(s, 21)),
            mtry!(parse_byte_from_ascii_str_at(s, 24)),
            mtry!(parse_byte_from_ascii_str_at(s, 26)),
            mtry!(parse_byte_from_ascii_str_at(s, 28)),
            mtry!(parse_byte_from_ascii_str_at(s, 30)),
            mtry!(parse_byte_from_ascii_str_at(s, 32)),
            mtry!(parse_byte_from_ascii_str_at(s, 34)),
        ]))
    }

    /// Parse a GUID from a string, panicking on failure.
    ///
    /// The input must be in "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
    /// format, where each `x` is a hex digit (any of `0-9`, `a-f`, or
    /// `A-F`).
    ///
    /// This function is marked `track_caller` so that error messages
    /// point directly to the invalid GUID string.
    ///
    /// # Panics
    ///
    /// This function will panic if the input is not in the format shown
    /// above. In particular, it will panic if the input is not exactly
    /// 36 bytes long, or if the input does not have separators at the
    /// expected positions, or if any of the remaining characters are
    /// not valid hex digits.
    #[must_use]
    #[track_caller]
    pub const fn parse_or_panic(s: &str) -> Self {
        match Self::try_parse(s) {
            Ok(g) => g,
            Err(GuidFromStrError::Length) => {
                panic!("GUID string has wrong length (expected 36 bytes)");
            }
            Err(GuidFromStrError::Separator(_)) => {
                panic!("GUID string is missing one or more separators (`-`)");
            }
            Err(GuidFromStrError::Hex(_)) => {
                panic!("GUID string contains one or more invalid characters");
            }
        }
    }

    /// Create a GUID from a 16-byte array. No changes to byte order are made.
    #[must_use]
    pub const fn from_bytes(bytes: [u8; 16]) -> Self {
        Self::new(
            [bytes[0], bytes[1], bytes[2], bytes[3]],
            [bytes[4], bytes[5]],
            [bytes[6], bytes[7]],
            bytes[8],
            bytes[9],
            [
                bytes[10], bytes[11], bytes[12], bytes[13], bytes[14],
                bytes[15],
            ],
        )
    }

    /// Convert to a 16-byte array.
    #[must_use]
    pub const fn to_bytes(self) -> [u8; 16] {
        let time_low = self.time_low();

        [
            time_low[0],
            time_low[1],
            time_low[2],
            time_low[3],
            self.time_mid[0],
            self.time_mid[1],
            self.time_high_and_version[0],
            self.time_high_and_version[1],
            self.clock_seq_high_and_reserved,
            self.clock_seq_low,
            self.node[0],
            self.node[1],
            self.node[2],
            self.node[3],
            self.node[4],
            self.node[5],
        ]
    }

    /// Convert to a lower-case hex ASCII string.
    ///
    /// The output is in "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" format.
    #[must_use]
    pub const fn to_ascii_hex_lower(self) -> [u8; 36] {
        let bytes = self.to_bytes();

        let mut buf = [0; 36];
        (buf[0], buf[1]) = byte_to_ascii_hex_lower(bytes[3]);
        (buf[2], buf[3]) = byte_to_ascii_hex_lower(bytes[2]);
        (buf[4], buf[5]) = byte_to_ascii_hex_lower(bytes[1]);
        (buf[6], buf[7]) = byte_to_ascii_hex_lower(bytes[0]);
        buf[8] = b'-';
        (buf[9], buf[10]) = byte_to_ascii_hex_lower(bytes[5]);
        (buf[11], buf[12]) = byte_to_ascii_hex_lower(bytes[4]);
        buf[13] = b'-';
        (buf[14], buf[15]) = byte_to_ascii_hex_lower(bytes[7]);
        (buf[16], buf[17]) = byte_to_ascii_hex_lower(bytes[6]);
        buf[18] = b'-';
        (buf[19], buf[20]) = byte_to_ascii_hex_lower(bytes[8]);
        (buf[21], buf[22]) = byte_to_ascii_hex_lower(bytes[9]);
        buf[23] = b'-';
        (buf[24], buf[25]) = byte_to_ascii_hex_lower(bytes[10]);
        (buf[26], buf[27]) = byte_to_ascii_hex_lower(bytes[11]);
        (buf[28], buf[29]) = byte_to_ascii_hex_lower(bytes[12]);
        (buf[30], buf[31]) = byte_to_ascii_hex_lower(bytes[13]);
        (buf[32], buf[33]) = byte_to_ascii_hex_lower(bytes[14]);
        (buf[34], buf[35]) = byte_to_ascii_hex_lower(bytes[15]);
        buf
    }
}

impl Default for Guid {
    fn default() -> Self {
        Self::ZERO
    }
}

impl Display for Guid {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        let ascii = self.to_ascii_hex_lower();
        // OK to unwrap since the ascii output is valid utf-8.
        let s = str::from_utf8(&ascii).unwrap();
        f.write_str(s)
    }
}

impl FromStr for Guid {
    type Err = GuidFromStrError;

    /// Parse a GUID from a string, panicking on failure.
    ///
    /// The input must be in "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
    /// format, where each `x` is a hex digit (any of `0-9`, `a-f`, or
    /// `A-F`).
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Self::try_parse(s)
    }
}

#[cfg(feature = "serde")]
impl Serialize for Guid {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let ascii = self.to_ascii_hex_lower();
        // OK to unwrap since the ascii output is valid utf-8.
        let s = str::from_utf8(&ascii).unwrap();
        serializer.serialize_str(s)
    }
}

#[cfg(feature = "serde")]
struct DeserializerVisitor;

#[cfg(feature = "serde")]
impl<'de> Visitor<'de> for DeserializerVisitor {
    type Value = Guid;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        formatter.write_str(
            "a string in the format \"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx\"",
        )
    }

    fn visit_str<E>(self, value: &str) -> Result<Self::Value, E>
    where
        E: de::Error,
    {
        Guid::try_parse(value).map_err(E::custom)
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Guid {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        deserializer.deserialize_str(DeserializerVisitor)
    }
}

/// Variant or type of GUID, as defined in [RFC4122].
///
/// [RFC4122]: https://datatracker.ietf.org/doc/html/rfc4122#section-4.1.3
#[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub enum Variant {
    /// Reserved, NCS backward compatibility.
    ReservedNcs,

    /// The GUID variant described by RFC4122.
    Rfc4122,

    /// Reserved, Microsoft Corporation backward compatibility.
    ReservedMicrosoft,

    /// Reserved for future use.
    ReservedFuture,
}