1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
//! Device Path protocol
//!
//! A UEFI device path is a very flexible structure for encoding a
//! programmatic path such as a hard drive or console.
//!
//! A device path is made up of a packed list of variable-length nodes of
//! various types. The entire device path is terminated with an
//! [`END_ENTIRE`] node. A device path _may_ contain multiple device-path
//! instances separated by [`END_INSTANCE`] nodes, but typical paths contain
//! only a single instance (in which case no `END_INSTANCE` node is needed).
//!
//! Example of what a device path containing two instances (each comprised of
//! three nodes) might look like:
//!
//! ```text
//! ┌──────┬─────┬──────────────╥───────┬──────────┬────────────┐
//! │ ACPI │ PCI │ END_INSTANCE ║ CDROM │ FILEPATH │ END_ENTIRE │
//! └──────┴─────┴──────────────╨───────┴──────────┴────────────┘
//! ↑                           ↑                               ↑
//! ├─── DevicePathInstance ────╨────── DevicePathInstance ─────┤
//! │                                                           │
//! └─────────────────── Entire DevicePath ─────────────────────┘
//! ```
//!
//! # Types
//!
//! To represent device paths, this module provides several types:
//!
//! * [`DevicePath`] is the root type that represents a full device
//!   path, containing one or more device path instance. It ends with an
//!   [`END_ENTIRE`] node. It implements [`Protocol`] (corresponding to
//!   `EFI_DEVICE_PATH_PROTOCOL`).
//!
//! * [`DevicePathInstance`] represents a single path instance within a
//!   device path. It ends with either an [`END_INSTANCE`] or [`END_ENTIRE`]
//!   node.
//!
//! * [`DevicePathNode`] represents a single node within a path. The
//!   node's [`device_type`] and [`sub_type`] must be examined to
//!   determine what type of data it contains.
//!
//!   Specific node types have their own structures in these submodules:
//!   * [`acpi`]
//!   * [`bios_boot_spec`]
//!   * [`end`]
//!   * [`hardware`]
//!   * [`media`]
//!   * [`messaging`]
//!
//! * [`DevicePathNodeEnum`] contains variants for references to each
//!   type of node. Call [`DevicePathNode::as_enum`] to convert from a
//!   [`DevicePathNode`] reference to a `DevicePathNodeEnum`.
//!
//! * [`DevicePathHeader`] is a header present at the start of every
//!   node. It describes the type of node as well as the node's size.
//!
//! * [`FfiDevicePath`] is an opaque type used whenever a device path
//!   pointer is passed to or from external UEFI interfaces (i.e. where
//!   the UEFI spec uses `const* EFI_DEVICE_PATH_PROTOCOL`, `*const
//!   FfiDevicePath` should be used in the Rust definition). Many of the
//!   other types in this module are DSTs, so pointers to the type are
//!   "fat" and not suitable for FFI.
//!
//! All of these types use a packed layout and may appear on any byte
//! boundary.
//!
//! Note: the API provided by this module is currently mostly limited to
//! reading existing device paths rather than constructing new ones.
//!
//! [`END_ENTIRE`]: DeviceSubType::END_ENTIRE
//! [`END_INSTANCE`]: DeviceSubType::END_INSTANCE
//! [`Protocol`]: crate::proto::Protocol
//! [`device_type`]: DevicePathNode::device_type
//! [`sub_type`]: DevicePathNode::sub_type

pub mod build;
pub mod text;

mod device_path_gen;
pub use device_path_gen::{
    acpi, bios_boot_spec, end, hardware, media, messaging, DevicePathNodeEnum,
};

use crate::proto::{unsafe_protocol, ProtocolPointer};
use core::ffi::c_void;
use core::fmt::{self, Debug, Display, Formatter};
use core::mem;
use core::ops::Deref;
use ptr_meta::Pointee;

#[cfg(feature = "alloc")]
use {
    crate::proto::device_path::text::{AllowShortcuts, DevicePathToText, DisplayOnly},
    crate::table::boot::{
        BootServices, OpenProtocolAttributes, OpenProtocolParams, ScopedProtocol, SearchType,
    },
    crate::{CString16, Identify},
    alloc::borrow::ToOwned,
    alloc::boxed::Box,
};

opaque_type! {
    /// Opaque type that should be used to represent a pointer to a
    /// [`DevicePath`] or [`DevicePathNode`] in foreign function interfaces. This
    /// type produces a thin pointer, unlike [`DevicePath`] and
    /// [`DevicePathNode`].
    pub struct FfiDevicePath;
}

/// Header that appears at the start of every [`DevicePathNode`].
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[repr(C, packed)]
pub struct DevicePathHeader {
    /// Type of device
    pub device_type: DeviceType,
    /// Sub type of device
    pub sub_type: DeviceSubType,
    /// Size (in bytes) of the [`DevicePathNode`], including this header.
    pub length: u16,
}

/// A single node within a [`DevicePath`].
///
/// Each node starts with a [`DevicePathHeader`]. The rest of the data
/// in the node depends on the type of node. You can "cast" a node to a specific
/// one like this:
/// ```no_run
/// use uefi::proto::device_path::DevicePath;
/// use uefi::proto::device_path::media::FilePath;
///
/// let image_device_path: &DevicePath = unsafe { DevicePath::from_ffi_ptr(0x1337 as *const _) };
/// let file_path = image_device_path
///         .node_iter()
///         .find_map(|node| {
///             let node: &FilePath = node.try_into().ok()?;
///             let path = node.path_name().to_cstring16().ok()?;
///             Some(path.to_string().to_uppercase())
///         });
/// ```
/// More types are available in [`uefi::proto::device_path`]. Builder types
/// can be found in [`uefi::proto::device_path::build`]
///
/// See the [module-level documentation] for more details.
///
/// [module-level documentation]: crate::proto::device_path
#[derive(Eq, Pointee)]
#[repr(C, packed)]
pub struct DevicePathNode {
    header: DevicePathHeader,
    data: [u8],
}

impl DevicePathNode {
    /// Create a [`DevicePathNode`] reference from an opaque pointer.
    ///
    /// # Safety
    ///
    /// The input pointer must point to valid data. That data must
    /// remain valid for the lifetime `'a`, and cannot be mutated during
    /// that lifetime.
    #[must_use]
    pub unsafe fn from_ffi_ptr<'a>(ptr: *const FfiDevicePath) -> &'a DevicePathNode {
        let header = *ptr.cast::<DevicePathHeader>();

        let data_len = usize::from(header.length) - mem::size_of::<DevicePathHeader>();
        &*ptr_meta::from_raw_parts(ptr.cast(), data_len)
    }

    /// Cast to a [`FfiDevicePath`] pointer.
    #[must_use]
    pub const fn as_ffi_ptr(&self) -> *const FfiDevicePath {
        let ptr: *const Self = self;
        ptr.cast::<FfiDevicePath>()
    }

    /// Type of device
    #[must_use]
    pub const fn device_type(&self) -> DeviceType {
        self.header.device_type
    }

    /// Sub type of device
    #[must_use]
    pub const fn sub_type(&self) -> DeviceSubType {
        self.header.sub_type
    }

    /// Tuple of the node's type and subtype.
    #[must_use]
    pub const fn full_type(&self) -> (DeviceType, DeviceSubType) {
        (self.header.device_type, self.header.sub_type)
    }

    /// Size (in bytes) of the full [`DevicePathNode`], including the header.
    #[must_use]
    pub const fn length(&self) -> u16 {
        self.header.length
    }

    /// True if this node ends an entire [`DevicePath`].
    #[must_use]
    pub fn is_end_entire(&self) -> bool {
        self.full_type() == (DeviceType::END, DeviceSubType::END_ENTIRE)
    }

    /// Returns the payload data of this node.
    #[must_use]
    pub fn data(&self) -> &[u8] {
        &self.data
    }

    /// Convert from a generic [`DevicePathNode`] reference to an enum
    /// of more specific node types.
    pub fn as_enum(&self) -> Result<DevicePathNodeEnum, NodeConversionError> {
        DevicePathNodeEnum::try_from(self)
    }

    /// Transforms the device path node to its string representation using the
    /// [`DevicePathToText`] protocol.
    #[cfg(feature = "alloc")]
    pub fn to_string(
        &self,
        bs: &BootServices,
        display_only: DisplayOnly,
        allow_shortcuts: AllowShortcuts,
    ) -> Result<CString16, DevicePathToTextError> {
        let to_text_protocol = open_text_protocol(bs)?;

        to_text_protocol
            .convert_device_node_to_text(bs, self, display_only, allow_shortcuts)
            .map(|pool_string| {
                let cstr16 = &*pool_string;
                // Another allocation; pool string is dropped. This overhead
                // is negligible. CString16 is more convenient to use.
                CString16::from(cstr16)
            })
            .map_err(|_| DevicePathToTextError::OutOfMemory)
    }
}

impl Debug for DevicePathNode {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.debug_struct("DevicePathNode")
            .field("header", &self.header)
            .field("data", &&self.data)
            .finish()
    }
}

impl PartialEq for DevicePathNode {
    fn eq(&self, other: &Self) -> bool {
        self.header == other.header && self.data == other.data
    }
}

/// A single device path instance that ends with either an [`END_INSTANCE`]
/// or [`END_ENTIRE`] node. Use [`DevicePath::instance_iter`] to get the
/// path instances in a [`DevicePath`].
///
/// See the [module-level documentation] for more details.
///
/// [`END_ENTIRE`]: DeviceSubType::END_ENTIRE
/// [`END_INSTANCE`]: DeviceSubType::END_INSTANCE
/// [module-level documentation]: crate::proto::device_path
#[repr(C, packed)]
#[derive(Eq, Pointee)]
pub struct DevicePathInstance {
    data: [u8],
}

impl DevicePathInstance {
    /// Get an iterator over the [`DevicePathNodes`] in this
    /// instance. Iteration ends when any [`DeviceType::END`] node is
    /// reached.
    ///
    /// [`DevicePathNodes`]: DevicePathNode
    #[must_use]
    pub const fn node_iter(&self) -> DevicePathNodeIterator {
        DevicePathNodeIterator {
            nodes: &self.data,
            stop_condition: StopCondition::AnyEndNode,
        }
    }

    /// Returns a slice of the underlying bytes.
    #[must_use]
    pub const fn as_bytes(&self) -> &[u8] {
        &self.data
    }

    /// Returns a boxed copy of that value.
    #[cfg(feature = "alloc")]
    #[must_use]
    pub fn to_boxed(&self) -> Box<Self> {
        let data = self.data.to_owned();
        let data = data.into_boxed_slice();
        unsafe { mem::transmute(data) }
    }
}

impl Debug for DevicePathInstance {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.debug_struct("DevicePathInstance")
            .field("data", &&self.data)
            .finish()
    }
}

impl PartialEq for DevicePathInstance {
    fn eq(&self, other: &Self) -> bool {
        self.data == other.data
    }
}

#[cfg(feature = "alloc")]
impl ToOwned for DevicePathInstance {
    type Owned = Box<DevicePathInstance>;

    fn to_owned(&self) -> Self::Owned {
        self.to_boxed()
    }
}

/// Device path protocol.
///
/// Can be used on any device handle to obtain generic path/location information
/// concerning the physical device or logical device. If the handle does not
/// logically map to a physical device, the handle may not necessarily support
/// the device path protocol. The device path describes the location of the
/// device the handle is for. The size of the Device Path can be determined from
/// the structures that make up the Device Path.
///
/// See the [module-level documentation] for more details.
///
/// [module-level documentation]: crate::proto::device_path
/// [`END_ENTIRE`]: DeviceSubType::END_ENTIRE
#[repr(C, packed)]
#[unsafe_protocol(uefi_raw::protocol::device_path::DevicePathProtocol::GUID)]
#[derive(Eq, Pointee)]
pub struct DevicePath {
    data: [u8],
}

impl ProtocolPointer for DevicePath {
    unsafe fn ptr_from_ffi(ptr: *const c_void) -> *const Self {
        ptr_meta::from_raw_parts(ptr.cast(), Self::size_in_bytes_from_ptr(ptr))
    }

    unsafe fn mut_ptr_from_ffi(ptr: *mut c_void) -> *mut Self {
        ptr_meta::from_raw_parts_mut(ptr.cast(), Self::size_in_bytes_from_ptr(ptr))
    }
}

impl DevicePath {
    /// Calculate the size in bytes of the entire `DevicePath` starting
    /// at `ptr`. This adds up each node's length, including the
    /// end-entire node.
    unsafe fn size_in_bytes_from_ptr(ptr: *const c_void) -> usize {
        let mut ptr = ptr.cast::<u8>();
        let mut total_size_in_bytes: usize = 0;
        loop {
            let node = DevicePathNode::from_ffi_ptr(ptr.cast::<FfiDevicePath>());
            let node_size_in_bytes = usize::from(node.length());
            total_size_in_bytes += node_size_in_bytes;
            if node.is_end_entire() {
                break;
            }
            ptr = ptr.add(node_size_in_bytes);
        }

        total_size_in_bytes
    }

    /// Create a [`DevicePath`] reference from an opaque pointer.
    ///
    /// # Safety
    ///
    /// The input pointer must point to valid data. That data must
    /// remain valid for the lifetime `'a`, and cannot be mutated during
    /// that lifetime.
    #[must_use]
    pub unsafe fn from_ffi_ptr<'a>(ptr: *const FfiDevicePath) -> &'a DevicePath {
        &*Self::ptr_from_ffi(ptr.cast::<c_void>())
    }

    /// Cast to a [`FfiDevicePath`] pointer.
    #[must_use]
    pub const fn as_ffi_ptr(&self) -> *const FfiDevicePath {
        let p = self as *const Self;
        p.cast()
    }

    /// Get an iterator over the [`DevicePathInstance`]s in this path.
    #[must_use]
    pub const fn instance_iter(&self) -> DevicePathInstanceIterator {
        DevicePathInstanceIterator {
            remaining_path: Some(self),
        }
    }

    /// Get an iterator over the [`DevicePathNode`]s starting at
    /// `self`. Iteration ends when a path is reached where
    /// [`is_end_entire`][DevicePathNode::is_end_entire] is true. That ending
    /// path is not returned by the iterator.
    #[must_use]
    pub const fn node_iter(&self) -> DevicePathNodeIterator {
        DevicePathNodeIterator {
            nodes: &self.data,
            stop_condition: StopCondition::EndEntireNode,
        }
    }

    /// Returns a slice of the underlying bytes.
    #[must_use]
    pub const fn as_bytes(&self) -> &[u8] {
        &self.data
    }

    /// Returns a boxed copy of that value.
    #[cfg(feature = "alloc")]
    #[must_use]
    pub fn to_boxed(&self) -> Box<Self> {
        let data = self.data.to_owned();
        let data = data.into_boxed_slice();
        unsafe { mem::transmute(data) }
    }

    /// Transforms the device path to its string representation using the
    /// [`DevicePathToText`] protocol.
    #[cfg(feature = "alloc")]
    pub fn to_string(
        &self,
        bs: &BootServices,
        display_only: DisplayOnly,
        allow_shortcuts: AllowShortcuts,
    ) -> Result<CString16, DevicePathToTextError> {
        let to_text_protocol = open_text_protocol(bs)?;

        to_text_protocol
            .convert_device_path_to_text(bs, self, display_only, allow_shortcuts)
            .map(|pool_string| {
                let cstr16 = &*pool_string;
                // Another allocation; pool string is dropped. This overhead
                // is negligible. CString16 is more convenient to use.
                CString16::from(cstr16)
            })
            .map_err(|_| DevicePathToTextError::OutOfMemory)
    }
}

impl Debug for DevicePath {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.debug_struct("DevicePath")
            .field("data", &&self.data)
            .finish()
    }
}

impl PartialEq for DevicePath {
    fn eq(&self, other: &Self) -> bool {
        self.data == other.data
    }
}

#[cfg(feature = "alloc")]
impl ToOwned for DevicePath {
    type Owned = Box<DevicePath>;

    fn to_owned(&self) -> Self::Owned {
        self.to_boxed()
    }
}

/// Iterator over the [`DevicePathInstance`]s in a [`DevicePath`].
///
/// This struct is returned by [`DevicePath::instance_iter`].
#[derive(Debug)]
pub struct DevicePathInstanceIterator<'a> {
    remaining_path: Option<&'a DevicePath>,
}

impl<'a> Iterator for DevicePathInstanceIterator<'a> {
    type Item = &'a DevicePathInstance;

    fn next(&mut self) -> Option<Self::Item> {
        let remaining_path = self.remaining_path?;

        let mut instance_size: usize = 0;

        // Find the end of the instance, which can be either kind of end
        // node (end-instance or end-entire). Count the number of bytes
        // up to and including that end node.
        let node_iter = DevicePathNodeIterator {
            nodes: &remaining_path.data,
            stop_condition: StopCondition::NoMoreNodes,
        };
        for node in node_iter {
            instance_size += usize::from(node.length());
            if node.device_type() == DeviceType::END {
                break;
            }
        }

        let (head, rest) = remaining_path.data.split_at(instance_size);

        if rest.is_empty() {
            self.remaining_path = None;
        } else {
            self.remaining_path = unsafe {
                Some(&*ptr_meta::from_raw_parts(
                    rest.as_ptr().cast::<()>(),
                    rest.len(),
                ))
            };
        }

        unsafe {
            Some(&*ptr_meta::from_raw_parts(
                head.as_ptr().cast::<()>(),
                head.len(),
            ))
        }
    }
}

#[derive(Debug)]
enum StopCondition {
    AnyEndNode,
    EndEntireNode,
    NoMoreNodes,
}

/// Iterator over [`DevicePathNode`]s.
///
/// This struct is returned by [`DevicePath::node_iter`] and
/// [`DevicePathInstance::node_iter`].
#[derive(Debug)]
pub struct DevicePathNodeIterator<'a> {
    nodes: &'a [u8],
    stop_condition: StopCondition,
}

impl<'a> Iterator for DevicePathNodeIterator<'a> {
    type Item = &'a DevicePathNode;

    fn next(&mut self) -> Option<Self::Item> {
        if self.nodes.is_empty() {
            return None;
        }

        let node =
            unsafe { DevicePathNode::from_ffi_ptr(self.nodes.as_ptr().cast::<FfiDevicePath>()) };

        // Check if an early stop condition has been reached.
        let stop = match self.stop_condition {
            StopCondition::AnyEndNode => node.device_type() == DeviceType::END,
            StopCondition::EndEntireNode => node.is_end_entire(),
            StopCondition::NoMoreNodes => false,
        };

        if stop {
            // Clear the remaining node data so that future calls to
            // next() immediately return `None`.
            self.nodes = &[];
            None
        } else {
            // Advance to next node.
            let node_size = usize::from(node.length());
            self.nodes = &self.nodes[node_size..];
            Some(node)
        }
    }
}

newtype_enum! {
/// Type identifier for a DevicePath
pub enum DeviceType: u8 => {
    /// Hardware Device Path.
    ///
    /// This Device Path defines how a device is attached to the resource domain of a system, where resource domain is
    /// simply the shared memory, memory mapped I/ O, and I/O space of the system.
    HARDWARE = 0x01,
    /// ACPI Device Path.
    ///
    /// This Device Path is used to describe devices whose enumeration is not described in an industry-standard fashion.
    /// These devices must be described using ACPI AML in the ACPI namespace; this Device Path is a linkage to the ACPI
    /// namespace.
    ACPI = 0x02,
    /// Messaging Device Path.
    ///
    /// This Device Path is used to describe the connection of devices outside the resource domain of the system. This
    /// Device Path can describe physical messaging information such as a SCSI ID, or abstract information such as
    /// networking protocol IP addresses.
    MESSAGING = 0x03,
    /// Media Device Path.
    ///
    /// This Device Path is used to describe the portion of a medium that is being abstracted by a boot service.
    /// For example, a Media Device Path could define which partition on a hard drive was being used.
    MEDIA = 0x04,
    /// BIOS Boot Specification Device Path.
    ///
    /// This Device Path is used to point to boot legacy operating systems; it is based on the BIOS Boot Specification
    /// Version 1.01.
    BIOS_BOOT_SPEC = 0x05,
    /// End of Hardware Device Path.
    ///
    /// Depending on the Sub-Type, this Device Path node is used to indicate the end of the Device Path instance or
    /// Device Path structure.
    END = 0x7F,
}}

/// Sub-type identifier for a DevicePath
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct DeviceSubType(pub u8);

impl DeviceSubType {
    /// PCI Device Path.
    pub const HARDWARE_PCI: DeviceSubType = DeviceSubType(1);
    /// PCCARD Device Path.
    pub const HARDWARE_PCCARD: DeviceSubType = DeviceSubType(2);
    /// Memory-mapped Device Path.
    pub const HARDWARE_MEMORY_MAPPED: DeviceSubType = DeviceSubType(3);
    /// Vendor-Defined Device Path.
    pub const HARDWARE_VENDOR: DeviceSubType = DeviceSubType(4);
    /// Controller Device Path.
    pub const HARDWARE_CONTROLLER: DeviceSubType = DeviceSubType(5);
    /// BMC Device Path.
    pub const HARDWARE_BMC: DeviceSubType = DeviceSubType(6);

    /// ACPI Device Path.
    pub const ACPI: DeviceSubType = DeviceSubType(1);
    /// Expanded ACPI Device Path.
    pub const ACPI_EXPANDED: DeviceSubType = DeviceSubType(2);
    /// ACPI _ADR Device Path.
    pub const ACPI_ADR: DeviceSubType = DeviceSubType(3);
    /// NVDIMM Device Path.
    pub const ACPI_NVDIMM: DeviceSubType = DeviceSubType(4);

    /// ATAPI Device Path.
    pub const MESSAGING_ATAPI: DeviceSubType = DeviceSubType(1);
    /// SCSI Device Path.
    pub const MESSAGING_SCSI: DeviceSubType = DeviceSubType(2);
    /// Fibre Channel Device Path.
    pub const MESSAGING_FIBRE_CHANNEL: DeviceSubType = DeviceSubType(3);
    /// 1394 Device Path.
    pub const MESSAGING_1394: DeviceSubType = DeviceSubType(4);
    /// USB Device Path.
    pub const MESSAGING_USB: DeviceSubType = DeviceSubType(5);
    /// I2O Device Path.
    pub const MESSAGING_I2O: DeviceSubType = DeviceSubType(6);
    /// Infiniband Device Path.
    pub const MESSAGING_INFINIBAND: DeviceSubType = DeviceSubType(9);
    /// Vendor-Defined Device Path.
    pub const MESSAGING_VENDOR: DeviceSubType = DeviceSubType(10);
    /// MAC Address Device Path.
    pub const MESSAGING_MAC_ADDRESS: DeviceSubType = DeviceSubType(11);
    /// IPV4 Device Path.
    pub const MESSAGING_IPV4: DeviceSubType = DeviceSubType(12);
    /// IPV6 Device Path.
    pub const MESSAGING_IPV6: DeviceSubType = DeviceSubType(13);
    /// UART Device Path.
    pub const MESSAGING_UART: DeviceSubType = DeviceSubType(14);
    /// USB Class Device Path.
    pub const MESSAGING_USB_CLASS: DeviceSubType = DeviceSubType(15);
    /// USB WWID Device Path.
    pub const MESSAGING_USB_WWID: DeviceSubType = DeviceSubType(16);
    /// Device Logical Unit.
    pub const MESSAGING_DEVICE_LOGICAL_UNIT: DeviceSubType = DeviceSubType(17);
    /// SATA Device Path.
    pub const MESSAGING_SATA: DeviceSubType = DeviceSubType(18);
    /// iSCSI Device Path node (base information).
    pub const MESSAGING_ISCSI: DeviceSubType = DeviceSubType(19);
    /// VLAN Device Path node.
    pub const MESSAGING_VLAN: DeviceSubType = DeviceSubType(20);
    /// Fibre Channel Ex Device Path.
    pub const MESSAGING_FIBRE_CHANNEL_EX: DeviceSubType = DeviceSubType(21);
    /// Serial Attached SCSI (SAS) Ex Device Path.
    pub const MESSAGING_SCSI_SAS_EX: DeviceSubType = DeviceSubType(22);
    /// NVM Express Namespace Device Path.
    pub const MESSAGING_NVME_NAMESPACE: DeviceSubType = DeviceSubType(23);
    /// Uniform Resource Identifiers (URI) Device Path.
    pub const MESSAGING_URI: DeviceSubType = DeviceSubType(24);
    /// UFS Device Path.
    pub const MESSAGING_UFS: DeviceSubType = DeviceSubType(25);
    /// SD (Secure Digital) Device Path.
    pub const MESSAGING_SD: DeviceSubType = DeviceSubType(26);
    /// Bluetooth Device Path.
    pub const MESSAGING_BLUETOOTH: DeviceSubType = DeviceSubType(27);
    /// Wi-Fi Device Path.
    pub const MESSAGING_WIFI: DeviceSubType = DeviceSubType(28);
    /// eMMC (Embedded Multi-Media Card) Device Path.
    pub const MESSAGING_EMMC: DeviceSubType = DeviceSubType(29);
    /// BluetoothLE Device Path.
    pub const MESSAGING_BLUETOOTH_LE: DeviceSubType = DeviceSubType(30);
    /// DNS Device Path.
    pub const MESSAGING_DNS: DeviceSubType = DeviceSubType(31);
    /// NVDIMM Namespace Device Path.
    pub const MESSAGING_NVDIMM_NAMESPACE: DeviceSubType = DeviceSubType(32);
    /// REST Service Device Path.
    pub const MESSAGING_REST_SERVICE: DeviceSubType = DeviceSubType(33);
    /// NVME over Fabric (NVMe-oF) Namespace Device Path.
    pub const MESSAGING_NVME_OF_NAMESPACE: DeviceSubType = DeviceSubType(34);

    /// Hard Drive Media Device Path.
    pub const MEDIA_HARD_DRIVE: DeviceSubType = DeviceSubType(1);
    /// CD-ROM Media Device Path.
    pub const MEDIA_CD_ROM: DeviceSubType = DeviceSubType(2);
    /// Vendor-Defined Media Device Path.
    pub const MEDIA_VENDOR: DeviceSubType = DeviceSubType(3);
    /// File Path Media Device Path.
    pub const MEDIA_FILE_PATH: DeviceSubType = DeviceSubType(4);
    /// Media Protocol Device Path.
    pub const MEDIA_PROTOCOL: DeviceSubType = DeviceSubType(5);
    /// PIWG Firmware File.
    pub const MEDIA_PIWG_FIRMWARE_FILE: DeviceSubType = DeviceSubType(6);
    /// PIWG Firmware Volume.
    pub const MEDIA_PIWG_FIRMWARE_VOLUME: DeviceSubType = DeviceSubType(7);
    /// Relative Offset Range.
    pub const MEDIA_RELATIVE_OFFSET_RANGE: DeviceSubType = DeviceSubType(8);
    /// RAM Disk Device Path.
    pub const MEDIA_RAM_DISK: DeviceSubType = DeviceSubType(9);

    /// BIOS Boot Specification Device Path.
    pub const BIOS_BOOT_SPECIFICATION: DeviceSubType = DeviceSubType(1);

    /// End this instance of a Device Path and start a new one.
    pub const END_INSTANCE: DeviceSubType = DeviceSubType(0x01);
    /// End entire Device Path.
    pub const END_ENTIRE: DeviceSubType = DeviceSubType(0xff);
}

/// Error returned when converting from a [`DevicePathNode`] to a more
/// specific node type.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum NodeConversionError {
    /// The length of the node data is not valid for its type.
    InvalidLength,

    /// The node type is not currently supported.
    UnsupportedType,
}

/// Protocol for accessing the device path that was passed in to [`load_image`]
/// when loading a PE/COFF image.
///
/// The layout of this type is the same as a [`DevicePath`].
///
/// [`load_image`]: crate::table::boot::BootServices::load_image
#[repr(transparent)]
#[unsafe_protocol("bc62157e-3e33-4fec-9920-2d3b36d750df")]
#[derive(Debug, Pointee)]
pub struct LoadedImageDevicePath(DevicePath);

impl ProtocolPointer for LoadedImageDevicePath {
    unsafe fn ptr_from_ffi(ptr: *const c_void) -> *const Self {
        ptr_meta::from_raw_parts(ptr.cast(), DevicePath::size_in_bytes_from_ptr(ptr))
    }

    unsafe fn mut_ptr_from_ffi(ptr: *mut c_void) -> *mut Self {
        ptr_meta::from_raw_parts_mut(ptr.cast(), DevicePath::size_in_bytes_from_ptr(ptr))
    }
}

impl Deref for LoadedImageDevicePath {
    type Target = DevicePath;

    fn deref(&self) -> &DevicePath {
        &self.0
    }
}

/// Errors that may happen when a device path is transformed to a string
/// representation using:
/// - [`DevicePath::to_string`]
/// - [`DevicePathNode::to_string`]
#[derive(Debug)]
pub enum DevicePathToTextError {
    /// Can't locate a handle buffer with handles associated with the
    /// [`DevicePathToText`] protocol.
    CantLocateHandleBuffer(crate::Error),
    /// There is no handle supporting the [`DevicePathToText`] protocol.
    NoHandle,
    /// The handle supporting the [`DevicePathToText`] protocol exists but it
    /// could not be opened.
    CantOpenProtocol(crate::Error),
    /// Failed to allocate pool memory.
    OutOfMemory,
}

impl Display for DevicePathToTextError {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(f, "{self:?}")
    }
}

#[cfg(feature = "unstable")]
impl core::error::Error for DevicePathToTextError {
    fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
        match self {
            DevicePathToTextError::CantLocateHandleBuffer(e) => Some(e),
            DevicePathToTextError::CantOpenProtocol(e) => Some(e),
            _ => None,
        }
    }
}

/// Helper function to open the [`DevicePathToText`] protocol using the boot
/// services.
#[cfg(feature = "alloc")]
fn open_text_protocol(
    bs: &BootServices,
) -> Result<ScopedProtocol<DevicePathToText>, DevicePathToTextError> {
    let &handle = bs
        .locate_handle_buffer(SearchType::ByProtocol(&DevicePathToText::GUID))
        .map_err(DevicePathToTextError::CantLocateHandleBuffer)?
        .first()
        .ok_or(DevicePathToTextError::NoHandle)?;

    unsafe {
        bs.open_protocol::<DevicePathToText>(
            OpenProtocolParams {
                handle,
                agent: bs.image_handle(),
                controller: None,
            },
            OpenProtocolAttributes::GetProtocol,
        )
    }
    .map_err(DevicePathToTextError::CantOpenProtocol)
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloc::vec::Vec;
    use core::mem::{size_of, size_of_val};

    /// Create a node to `path` from raw data.
    fn add_node(path: &mut Vec<u8>, device_type: u8, sub_type: u8, node_data: &[u8]) {
        path.push(device_type);
        path.push(sub_type);
        path.extend(
            u16::try_from(mem::size_of::<DevicePathHeader>() + node_data.len())
                .unwrap()
                .to_le_bytes(),
        );
        path.extend(node_data);
    }

    /// Create a test device path list as raw bytes.
    fn create_raw_device_path() -> Vec<u8> {
        let mut raw_data = Vec::new();

        // First path instance.
        add_node(&mut raw_data, 0xa0, 0xb0, &[10, 11]);
        add_node(&mut raw_data, 0xa1, 0xb1, &[20, 21, 22, 23]);
        add_node(
            &mut raw_data,
            DeviceType::END.0,
            DeviceSubType::END_INSTANCE.0,
            &[],
        );
        // Second path instance.
        add_node(&mut raw_data, 0xa2, 0xb2, &[30, 31]);
        add_node(&mut raw_data, 0xa3, 0xb3, &[40, 41, 42, 43]);
        add_node(
            &mut raw_data,
            DeviceType::END.0,
            DeviceSubType::END_ENTIRE.0,
            &[],
        );

        raw_data
    }

    /// Check that `node` has the expected content.
    fn check_node(node: &DevicePathNode, device_type: u8, sub_type: u8, node_data: &[u8]) {
        assert_eq!(node.device_type().0, device_type);
        assert_eq!(node.sub_type().0, sub_type);
        assert_eq!(
            node.length(),
            u16::try_from(mem::size_of::<DevicePathHeader>() + node_data.len()).unwrap()
        );
        assert_eq!(&node.data, node_data);
    }

    #[test]
    fn test_device_path_nodes() {
        let raw_data = create_raw_device_path();
        let dp = unsafe { DevicePath::from_ffi_ptr(raw_data.as_ptr().cast()) };

        // Check that the size is the sum of the nodes' lengths.
        assert_eq!(mem::size_of_val(dp), 6 + 8 + 4 + 6 + 8 + 4);

        // Check the list's node iter.
        let nodes: Vec<_> = dp.node_iter().collect();
        check_node(nodes[0], 0xa0, 0xb0, &[10, 11]);
        check_node(nodes[1], 0xa1, 0xb1, &[20, 21, 22, 23]);
        check_node(
            nodes[2],
            DeviceType::END.0,
            DeviceSubType::END_INSTANCE.0,
            &[],
        );
        check_node(nodes[3], 0xa2, 0xb2, &[30, 31]);
        check_node(nodes[4], 0xa3, 0xb3, &[40, 41, 42, 43]);
        // The end-entire node is not returned by the iterator.
        assert_eq!(nodes.len(), 5);
    }

    #[test]
    fn test_device_path_instances() {
        let raw_data = create_raw_device_path();
        let dp = unsafe { DevicePath::from_ffi_ptr(raw_data.as_ptr().cast()) };

        // Check the list's instance iter.
        let mut iter = dp.instance_iter();
        let mut instance = iter.next().unwrap();
        assert_eq!(mem::size_of_val(instance), 6 + 8 + 4);

        // Check the first instance's node iter.
        let nodes: Vec<_> = instance.node_iter().collect();
        check_node(nodes[0], 0xa0, 0xb0, &[10, 11]);
        check_node(nodes[1], 0xa1, 0xb1, &[20, 21, 22, 23]);
        // The end node is not returned by the iterator.
        assert_eq!(nodes.len(), 2);

        // Check second instance.
        instance = iter.next().unwrap();
        assert_eq!(mem::size_of_val(instance), 6 + 8 + 4);

        let nodes: Vec<_> = instance.node_iter().collect();
        check_node(nodes[0], 0xa2, 0xb2, &[30, 31]);
        check_node(nodes[1], 0xa3, 0xb3, &[40, 41, 42, 43]);
        // The end node is not returned by the iterator.
        assert_eq!(nodes.len(), 2);

        // Only two instances.
        assert!(iter.next().is_none());
    }

    #[test]
    fn test_to_owned() {
        // Relevant assertion to verify the transmute is fine.
        assert_eq!(size_of::<&DevicePath>(), size_of::<&[u8]>());

        let raw_data = create_raw_device_path();
        let dp = unsafe { DevicePath::from_ffi_ptr(raw_data.as_ptr().cast()) };

        // Relevant assertion to verify the transmute is fine.
        assert_eq!(size_of_val(dp), size_of_val(&dp.data));

        let owned_dp = dp.to_owned();
        let owned_dp_ref = &*owned_dp;
        assert_eq!(owned_dp_ref, dp)
    }
}