1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
//! UEFI services available at runtime, even after the OS boots.

use super::Header;
use crate::table::boot::MemoryDescriptor;
use crate::{Result, Status};
use bitflags::bitflags;
use core::mem::MaybeUninit;
use core::ptr;

/// Contains pointers to all of the runtime services.
///
/// This table, and the function pointers it contains are valid
/// even after the UEFI OS loader and OS have taken control of the platform.
#[repr(C)]
pub struct RuntimeServices {
    header: Header,
    get_time:
        unsafe extern "efiapi" fn(time: *mut Time, capabilities: *mut TimeCapabilities) -> Status,
    set_time: unsafe extern "efiapi" fn(time: &Time) -> Status,
    // Skip some useless functions.
    _pad: [usize; 2],
    set_virtual_address_map: unsafe extern "efiapi" fn(
        map_size: usize,
        desc_size: usize,
        desc_version: u32,
        virtual_map: *mut MemoryDescriptor,
    ) -> Status,
    _pad2: [usize; 5],
    reset: unsafe extern "efiapi" fn(
        rt: ResetType,

        status: Status,
        data_size: usize,
        data: *const u8,
    ) -> !,
}

impl RuntimeServices {
    /// Query the current time and date information
    pub fn get_time(&self) -> Result<Time> {
        let mut time = MaybeUninit::<Time>::uninit();
        unsafe { (self.get_time)(time.as_mut_ptr(), ptr::null_mut()) }
            .into_with_val(|| unsafe { time.assume_init() })
    }

    /// Query the current time and date information and the RTC capabilities
    pub fn get_time_and_caps(&self) -> Result<(Time, TimeCapabilities)> {
        let mut time = MaybeUninit::<Time>::uninit();
        let mut caps = MaybeUninit::<TimeCapabilities>::uninit();
        unsafe { (self.get_time)(time.as_mut_ptr(), caps.as_mut_ptr()) }
            .into_with_val(|| unsafe { (time.assume_init(), caps.assume_init()) })
    }

    /// Sets the current local time and date information
    ///
    /// During runtime, if a PC-AT CMOS device is present in the platform, the
    /// caller must synchronize access to the device before calling `set_time`.
    ///
    /// # Safety
    ///
    /// Undefined behavior could happen if multiple tasks try to
    /// use this function at the same time without synchronisation.
    pub unsafe fn set_time(&mut self, time: &Time) -> Result {
        (self.set_time)(time).into()
    }

    /// Changes the runtime addressing mode of EFI firmware from physical to virtual.
    ///
    /// # Safety
    ///
    /// Setting new virtual memory map is unsafe and may cause undefined behaviors.
    pub unsafe fn set_virtual_address_map(&self, map: &mut [MemoryDescriptor]) -> Result {
        // Unsafe Code Guidelines guarantees that there is no padding in an array or a slice
        // between its elements if the element type is `repr(C)`, which is our case.
        //
        // See https://rust-lang.github.io/unsafe-code-guidelines/layout/arrays-and-slices.html
        let map_size = core::mem::size_of_val(map);
        let entry_size = core::mem::size_of::<MemoryDescriptor>();
        let entry_version = crate::table::boot::MEMORY_DESCRIPTOR_VERSION;
        let map_ptr = map.as_mut_ptr();
        (self.set_virtual_address_map)(map_size, entry_size, entry_version, map_ptr).into()
    }

    /// Resets the computer.
    pub fn reset(&self, rt: ResetType, status: Status, data: Option<&[u8]>) -> ! {
        let (size, data) = match data {
            // FIXME: The UEFI spec states that the data must start with a NUL-
            //        terminated string, which we should check... but it does not
            //        specify if that string should be Latin-1 or UCS-2!
            //
            //        PlatformSpecific resets should also insert a GUID after the
            //        NUL-terminated string.
            Some(data) => (data.len(), data.as_ptr()),
            None => (0, ptr::null()),
        };

        unsafe { (self.reset)(rt, status, size, data) }
    }
}

impl super::Table for RuntimeServices {
    const SIGNATURE: u64 = 0x5652_4553_544e_5552;
}

/// The current time information
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct Time {
    year: u16,  // 1900 - 9999
    month: u8,  // 1 - 12
    day: u8,    // 1 - 31
    hour: u8,   // 0 - 23
    minute: u8, // 0 - 59
    second: u8, // 0 - 59
    _pad1: u8,
    nanosecond: u32, // 0 - 999_999_999
    time_zone: i16,  // -1440 to 1440, or 2047 if unspecified
    daylight: Daylight,
    _pad2: u8,
}

bitflags! {
    /// Flags describing the capabilities of a memory range.
    pub struct Daylight: u8 {
        /// Time is affected by daylight savings time
        const ADJUST_DAYLIGHT = 0x01;
        /// Time has been adjusted for daylight savings time
        const IN_DAYLIGHT = 0x02;
    }
}

impl Time {
    /// Build an UEFI time struct
    #[allow(clippy::too_many_arguments)]
    pub fn new(
        year: u16,
        month: u8,
        day: u8,
        hour: u8,
        minute: u8,
        second: u8,
        nanosecond: u32,
        time_zone: i16,
        daylight: Daylight,
    ) -> Self {
        assert!(year >= 1900 && year <= 9999);
        assert!(month >= 1 && month <= 12);
        assert!(day >= 1 && day <= 31);
        assert!(hour <= 23);
        assert!(minute <= 59);
        assert!(second <= 59);
        assert!(nanosecond <= 999_999_999);
        assert!((time_zone >= -1440 && time_zone <= 1440) || time_zone == 2047);
        Self {
            year,
            month,
            day,
            hour,
            minute,
            second,
            _pad1: 0,
            nanosecond,
            time_zone,
            daylight,
            _pad2: 0,
        }
    }

    /// Query the year
    pub fn year(&self) -> u16 {
        self.year
    }

    /// Query the month
    pub fn month(&self) -> u8 {
        self.month
    }

    /// Query the day
    pub fn day(&self) -> u8 {
        self.day
    }

    /// Query the hour
    pub fn hour(&self) -> u8 {
        self.hour
    }

    /// Query the minute
    pub fn minute(&self) -> u8 {
        self.minute
    }

    /// Query the second
    pub fn second(&self) -> u8 {
        self.second
    }

    /// Query the nanosecond
    pub fn nanosecond(&self) -> u32 {
        self.nanosecond
    }

    /// Query the time offset in minutes from UTC, or None if using local time
    pub fn time_zone(&self) -> Option<i16> {
        if self.time_zone == 2047 {
            None
        } else {
            Some(self.time_zone)
        }
    }

    /// Query the daylight savings time information
    pub fn daylight(&self) -> Daylight {
        self.daylight
    }
}

/// Real time clock capabilities
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[repr(C)]
pub struct TimeCapabilities {
    /// Reporting resolution of the clock in counts per second. 1 for a normal
    /// PC-AT CMOS RTC device, which reports the time with 1-second resolution.
    pub resolution: u32,

    /// Timekeeping accuracy in units of 1e-6 parts per million.
    pub accuracy: u32,

    /// Whether a time set operation clears the device's time below the
    /// "resolution" reporting level. False for normal PC-AT CMOS RTC devices.
    pub sets_to_zero: bool,
}

/// The type of system reset.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[repr(u32)]
pub enum ResetType {
    /// Resets all the internal circuitry to its initial state.
    ///
    /// This is analogous to power cycling the device.
    Cold = 0,
    /// The processor is reset to its initial state.
    Warm,
    /// The components are powered off.
    Shutdown,
    /// A platform-specific reset type.
    ///
    /// The additional data must be a pointer to
    /// a null-terminated string followed by an UUID.
    PlatformSpecific,
    // SAFETY: This enum is never exposed to the user, but only fed as input to
    //         the firmware. Therefore, unexpected values can never come from
    //         the firmware, and modeling this as a Rust enum seems safe.
}