1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
//! Provides support for the UEFI debugging protocol.
//!
//! This protocol is designed to allow debuggers to query the state of the firmware,
//! as well as set up callbacks for various events.
//!
//! It also defines a Debugport protocol for debugging over serial devices.
//!
//! An example UEFI debugger is Intel's [UDK Debugger Tool][udk].
//!
//! [udk]: https://firmware.intel.com/develop/intel-uefi-tools-and-utilities/intel-uefi-development-kit-debugger-tool

use core::ffi::c_void;

use crate::proto::Protocol;
use crate::{unsafe_guid, Result, Status};

// re-export for ease of use
pub use self::context::SystemContext;
pub use self::exception::ExceptionType;

mod context;
mod exception;

/// The debugging support protocol allows debuggers to connect to a UEFI machine.
/// It is expected that there will typically be two instances of the EFI Debug Support protocol in the system.
/// One associated with the native processor instruction set (IA-32, x64, ARM, RISC-V, or Itanium processor
/// family), and one for the EFI virtual machine that implements EFI byte code (EBC).
/// While multiple instances of the EFI Debug Support protocol are expected, there must never be more than
/// one for any given instruction set.
///
/// NOTE: OVMF only implements this protocol interface for the virtual EBC processor
#[repr(C)]
#[unsafe_guid("2755590c-6f3c-42fa-9ea4-a3ba543cda25")]
#[derive(Protocol)]
pub struct DebugSupport {
    isa: ProcessorArch,
    get_maximum_processor_index:
        extern "efiapi" fn(this: &mut DebugSupport, max_processor_index: &mut usize) -> Status,
    register_periodic_callback: unsafe extern "efiapi" fn(
        this: &mut DebugSupport,
        processor_index: usize,
        periodic_callback: Option<unsafe extern "efiapi" fn(SystemContext)>,
    ) -> Status,
    register_exception_callback: unsafe extern "efiapi" fn(
        this: &mut DebugSupport,
        processor_index: usize,
        exception_callback: Option<unsafe extern "efiapi" fn(ExceptionType, SystemContext)>,
        exception_type: ExceptionType,
    ) -> Status,
    invalidate_instruction_cache: unsafe extern "efiapi" fn(
        this: &mut DebugSupport,
        processor_index: usize,
        start: *mut c_void,
        length: u64,
    ) -> Status,
}

impl DebugSupport {
    /// Returns the processor architecture of the running CPU.
    pub fn arch(&self) -> ProcessorArch {
        self.isa
    }

    /// Returns the maximum value that may be used for the processor_index parameter in
    /// `register_periodic_callback()` and `register_exception_callback()`.
    ///
    /// Note: Applications built with EDK2 (such as OVMF) always return `0` as of 2021-09-15
    pub fn get_maximum_processor_index(&mut self) -> usize {
        // initially set to a canary value for testing purposes
        let mut max_processor_index: usize = usize::MAX;

        // per the UEFI spec, this call should only return EFI_SUCCESS
        let _ = (self.get_maximum_processor_index)(self, &mut max_processor_index);

        max_processor_index
    }

    /// Registers a function to be called back periodically in interrupt context.
    /// Pass `None` for `callback` to deregister the currently registered function for
    /// a specified `processor_index`. Will return `Status::INVALID_PARAMETER` if
    /// `processor_index` exceeds the current maximum from `Self::get_maximum_processor_index`.
    ///
    /// Note: Applications built with EDK2 (such as OVMF) ignore the `processor_index` parameter
    ///
    /// # Safety
    /// No portion of the debug agent that runs in interrupt context may make any
    /// calls to EFI services or other protocol interfaces.
    pub unsafe fn register_periodic_callback(
        &mut self,
        processor_index: usize,
        callback: Option<unsafe extern "efiapi" fn(SystemContext)>,
    ) -> Result {
        if processor_index > self.get_maximum_processor_index() {
            return Err(Status::INVALID_PARAMETER.into());
        }

        // Safety: As we've validated the `processor_index`, this should always be safe
        (self.register_periodic_callback)(self, processor_index, callback).into()
    }

    /// Registers a function to be called when a given processor exception occurs.
    /// Pass `None` for `callback` to deregister the currently registered function for a
    /// given `exception_type` and `processor_index`. Will return `Status::INVALID_PARAMETER`
    /// if `processor_index` exceeds the current maximum from `Self::get_maximum_processor_index`.
    ///
    /// Note: Applications built with EDK2 (such as OVMF) ignore the `processor_index` parameter
    ///
    /// # Safety
    /// No portion of the debug agent that runs in interrupt context may make any
    /// calls to EFI services or other protocol interfaces.
    pub unsafe fn register_exception_callback(
        &mut self,
        processor_index: usize,
        callback: Option<unsafe extern "efiapi" fn(ExceptionType, SystemContext)>,
        exception_type: ExceptionType,
    ) -> Result {
        if processor_index > self.get_maximum_processor_index() {
            return Err(Status::INVALID_PARAMETER.into());
        }

        // Safety: As we've validated the `processor_index`, this should always be safe
        (self.register_exception_callback)(self, processor_index, callback, exception_type).into()
    }

    /// Invalidates processor instruction cache for a memory range for a given `processor_index`.
    ///
    /// Note: Applications built with EDK2 (such as OVMF) ignore the `processor_index` parameter
    ///
    /// # Safety
    /// `start` must be a c_void ptr to a valid memory address
    pub unsafe fn invalidate_instruction_cache(
        &mut self,
        processor_index: usize,
        start: *mut c_void,
        length: u64,
    ) -> Result {
        if processor_index > self.get_maximum_processor_index() {
            return Err(Status::INVALID_PARAMETER.into());
        }

        // per the UEFI spec, this call should only return EFI_SUCCESS
        // Safety: As we've validated the `processor_index`, this should always be safe
        (self.invalidate_instruction_cache)(self, processor_index, start, length).into()
    }
}

newtype_enum! {
/// The instruction set architecture of the running processor.
///
/// UEFI can be and has been ported to new CPU architectures in the past,
/// therefore modeling this C enum as a Rust enum (where the compiler must know
/// about every variant in existence) would _not_ be safe.
pub enum ProcessorArch: u32 => {
    /// 32-bit x86 PC
    X86_32      = 0x014C,
    /// 64-bit x86 PC
    X86_64      = 0x8664,
    /// Intel Itanium
    ITANIUM     = 0x200,
    /// UEFI Interpreter bytecode
    EBC         = 0x0EBC,
    /// ARM Thumb / Mixed
    ARM         = 0x01C2,
    /// ARM 64-bit
    AARCH_64    = 0xAA64,
    /// RISC-V 32-bit
    RISCV_32    = 0x5032,
    /// RISC-V 64-bit
    RISCV_64    = 0x5064,
    /// RISC-V 128-bit
    RISCV_128   = 0x5128,
}}