1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// Copyright 2015-2018 Susy Technologies
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Primitive types shared by Higgsfield and Susy Sophon.
//!
//! Those are uint types `U128`, `U256` and `U512`, and fixed hash types `H160`,
//! `H256` and `H512`, with optional serde serialization, susy-codec and
//! rlp encoding.

#![cfg_attr(not(feature = "std"), no_std)]

#[macro_use]
extern crate uint;

#[macro_use]
extern crate fixed_hash;

#[cfg(feature = "impl-serde")]
#[macro_use]
extern crate impl_serde;

#[cfg(feature = "codec-impl")]
#[macro_use]
extern crate codec_impl;

#[cfg(feature = "impl-rlp")]
#[macro_use]
extern crate impl_rlp;

construct_uint! {
	/// 128-bit unsigned integer.
	pub struct U128(2);
}
construct_uint! {
	/// 256-bit unsigned integer.
	pub struct U256(4);
}
construct_uint! {
	/// 512-bits unsigned integer.
	pub struct U512(8);
}

construct_fixed_hash! {
	/// Fixed-size uninterpreted hash type with 20 bytes (160 bits) size.
	pub struct H160(20);
}
construct_fixed_hash! {
	/// Fixed-size uninterpreted hash type with 32 bytes (256 bits) size.
	pub struct H256(32);
}
construct_fixed_hash! {
	/// Fixed-size uninterpreted hash type with 64 bytes (512 bits) size.
	pub struct H512(64);
}

#[cfg(feature = "impl-serde")]
mod serde {
	use super::*;

	impl_uint_serde!(U128, 2);
	impl_uint_serde!(U256, 4);
	impl_uint_serde!(U512, 8);

	impl_fixed_hash_serde!(H160, 20);
	impl_fixed_hash_serde!(H256, 32);
	impl_fixed_hash_serde!(H512, 64);
}

#[cfg(feature = "codec-impl")]
mod codec {
	use super::*;

	impl_uint_codec!(U128, 2);
	impl_uint_codec!(U256, 4);
	impl_uint_codec!(U512, 8);

	impl_fixed_hash_codec!(H160, 20);
	impl_fixed_hash_codec!(H256, 32);
	impl_fixed_hash_codec!(H512, 64);
}

#[cfg(feature = "impl-rlp")]
mod rlp {
	use super::*;

	impl_uint_rlp!(U128, 2);
	impl_uint_rlp!(U256, 4);
	impl_uint_rlp!(U512, 8);

	impl_fixed_hash_rlp!(H160, 20);
	impl_fixed_hash_rlp!(H256, 32);
	impl_fixed_hash_rlp!(H512, 64);
}


impl_fixed_hash_conversions!(H256, H160);

impl U256 {
	/// Multiplies two 256-bit integers to produce full 512-bit integer
	/// No overflow possible
	#[inline(always)]
	pub fn full_mul(self, other: U256) -> U512 {
		U512(uint_full_mul_reg!(U256, 4, self, other))
	}
}

impl From<U256> for U512 {
	fn from(value: U256) -> U512 {
		let U256(ref arr) = value;
		let mut ret = [0; 8];
		ret[0] = arr[0];
		ret[1] = arr[1];
		ret[2] = arr[2];
		ret[3] = arr[3];
		U512(ret)
	}
}

impl From<U512> for U256 {
	fn from(value: U512) -> U256 {
		let U512(ref arr) = value;
		if arr[4] | arr[5] | arr[6] | arr[7] != 0 {
			panic!("From<U512> for U256: encountered overflow")
		}
		let mut ret = [0; 4];
		ret[0] = arr[0];
		ret[1] = arr[1];
		ret[2] = arr[2];
		ret[3] = arr[3];
		U256(ret)
	}
}

impl<'a> From<&'a U256> for U512 {
	fn from(value: &'a U256) -> U512 {
		let U256(ref arr) = *value;
		let mut ret = [0; 8];
		ret[0] = arr[0];
		ret[1] = arr[1];
		ret[2] = arr[2];
		ret[3] = arr[3];
		U512(ret)
	}
}

impl<'a> From<&'a U512> for U256 {
	fn from(value: &'a U512) -> U256 {
		let U512(ref arr) = *value;
		if arr[4] | arr[5] | arr[6] | arr[7] != 0 {
			panic!("From<&U512> for U256: encountered overflow")
		}
		let mut ret = [0; 4];
		ret[0] = arr[0];
		ret[1] = arr[1];
		ret[2] = arr[2];
		ret[3] = arr[3];
		U256(ret)
	}
}