1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
/// Internal namespace.
pub( crate ) mod private
{
use crate::exposed::*;
// xxx : write article about the module
// zzz : extend diagnostics_tools
// zzz : add core::fmt to prelude
///
/// Type constructor to define tuple wrapping a given type.
///
/// In Rust, you often need to wrap a given type into a new one.
/// The role of the orphan rules in particular is basically to prevent you from implementing external traits for external types.
/// To overcome the restriction developer usually wrap the external type into a tuple introducing a new type.
/// Type constructor does exactly that and auto-implement traits From, Into, Deref and few more for the constructed type.
///
/// Besides type constructor for single element there are type constructors for `pair`, `homopair` and `many`:
///
/// - `Single` to wrap single element.
/// - `Pair` to wrap pair of distinct elements.
/// - `HomoPair` to wrap pair of elements with the same type.
/// - `Many` to wrap `Vec` of elements.
///
/// ## Macro `types` for type constructing
///
/// Macro `types` is responsible for generating code for Single, Pair, Homopair, Many. Each type constructor has its own keyword for that, but Pair and Homopair use the same keyword difference in a number of constituent types. It is possible to define all types at once.
///
/// ```rust ignore
/// {
/// use type_constructor::prelude::*;
///
/// types!
/// {
///
/// pub single MySingle : f32;
/// pub single SingleWithParametrized : std::sync::Arc< T : Copy >;
/// pub single SingleWithParameter : < T >;
///
/// pub pair MyPair : f32;
/// pub pair PairWithParametrized : std::sync::Arc< T1 : Copy >, std::sync::Arc< T2 : Copy >;
/// pub pair PairWithParameter : < T1, T2 >;
///
/// pub pair MyHomoPair : f32;
/// pub pair HomoPairWithParametrized : std::sync::Arc< T : Copy >;
/// pub pair HomoPairWithParameter : < T >;
///
/// pub many MyMany : f32;
/// pub many ManyWithParametrized : std::sync::Arc< T : Copy >;
/// pub many ManyWithParameter : < T >;
///
/// }
/// }
/// ```
///
/// It generates more than 1000 lines of code, which otherwise you would have to write manually.
///
/// ## Without macro
///
/// Macro `types` is exposed to generate new types, but in some cases, it is enough to reuse already generated types of such kind. The library ships such types: Single, Pair, Homopair, Many. Note: If you avoid generating new types you will get in a position to be not able to define your own implementation of foreign traits because of orphan rule.
///
/// ```rust ignore
///
/// let i32_in_tuple = type_constructor::Single::< i32 >::from( 13 );
/// dbg!( i32_in_tuple );
/// // i32_in_tuple = Single( 13 )
/// let i32_and_f32_in_tuple = type_constructor::Pair::< i32, f32 >::from( ( 13, 13.0 ) );
/// dbg!( i32_and_f32_in_tuple );
/// // vec_of_i32_in_tuple = Pair( 13, 13.0 )
/// let two_i32_in_tuple = type_constructor::HomoPair::< i32 >::from( ( 13, 31 ) );
/// dbg!( two_i32_in_tuple );
/// // vec_of_i32_in_tuple = HomoPair( 13, 31 )
/// let vec_of_i32_in_tuple = type_constructor::Many::< i32 >::from( [ 1, 2, 3 ] );
/// dbg!( vec_of_i32_in_tuple );
/// // vec_of_i32_in_tuple = Many([ 1, 2, 3 ])
///
/// ```
///
/// ## Make.
///
/// Make is the variadic constructor. It's the unified interface of the arbitrary-length constructor.
/// After implementing several traits `Make0`, `Make1` up to `MakeN` one can use make `make!` to construct instances.
///
/// ```rust ignore
/// #[ cfg( feature = "make" ) ]
/// {
/// use type_constructor::prelude::*;
///
/// let instance1 : Struct1 = make!();
/// let instance2 : Struct1 = make!( 13 );
/// let instance3 : Struct1 = make!( 1, 3 );
///
/// }
/// ```
///
/// ### Sample :: single-line single.
///
/// To define your own single-use macro `types!`. The single-line definition looks like that.
///
/// ```rust
/// use type_constructor::prelude::*;
/// types!( pub single MySingle : i32 );
/// let x = MySingle( 13 );
/// println!( "x : {}", x.0 );
/// ```
///
/// It generates code:
///
/// ```rust
/// use type_constructor::prelude::*;
///
/// pub struct MySingle( pub i32 );
///
/// impl core::ops::Deref for MySingle
/// {
/// type Target = i32;
/// fn deref( &self ) -> &Self::Target
/// {
/// &self.0
/// }
/// }
/// impl From< i32 > for MySingle
/// {
/// fn from( src : i32 ) -> Self
/// {
/// Self( src )
/// }
/// }
/// impl From< MySingle > for i32
/// {
/// fn from( src : MySingle ) -> Self
/// {
/// src.0
/// }
/// }
///
/// /* ... */
///
/// let x = MySingle( 13 );
/// println!( "x : {}", x.0 );
/// ```
///
/// ### Sample :: single with derives and attributes.
///
/// It's possible to define attributes as well as derives.
///
/// ```rust
/// use type_constructor::prelude::*;
/// types!
/// {
/// /// This is also attribute and macro understands it.
/// #[ derive( Debug ) ]
/// pub single MySingle : i32;
/// }
/// let x = MySingle( 13 );
/// dbg!( x );
/// ```
///
/// It generates code:
///
/// ```rust
/// use type_constructor::prelude::*;
///
/// /// This is also an attribute and macro understands it.
/// #[ derive( Debug ) ]
/// pub struct MySingle( pub i32 );
///
/// impl core::ops::Deref for MySingle
/// {
/// type Target = i32;
/// fn deref( &self ) -> &Self::Target
/// {
/// &self.0
/// }
/// }
/// impl From< i32 > for MySingle
/// {
/// fn from( src : i32 ) -> Self
/// {
/// Self( src )
/// }
/// }
/// impl From< MySingle > for i32
/// {
/// fn from( src : MySingle ) -> Self
/// {
/// src.0
/// }
/// }
///
/// /* ... */
///
/// let x = MySingle( 13 );
/// dbg!( x );
/// ```
///
/// ### Sample :: single with struct instead of macro.
///
/// Sometimes it's sufficient to use a common type instead of defining a brand new one.
/// You may use parameterized struct `Single< T >` instead of macro `types!` if that is the case.
///
/// ```rust
/// use type_constructor::prelude::*;
/// let x = Single::< i32 >( 13 );
/// dbg!( x );
/// ```
///
/// ### Sample :: single with a parametrized element.
///
/// Element of tuple could be parametrized.
///
/// ```rust
/// use type_constructor::prelude::*;
/// types!
/// {
/// #[ derive( Debug ) ]
/// pub single MySingle : std::sync::Arc< T : Copy >;
/// }
/// let x = MySingle( std::sync::Arc::new( 13 ) );
/// dbg!( x );
/// ```
///
/// It generates code:
///
/// ```rust
/// use type_constructor::*;
///
/// #[ derive( Debug ) ]
/// pub struct MySingle< T : Copy >( pub std::sync::Arc< T > );
///
/// impl<T: Copy> core::ops::Deref for MySingle< T >
/// {
/// type Target = std::sync::Arc< T >;
/// fn deref( &self ) -> &Self::Target
/// {
/// &self.0
/// }
/// }
/// impl< T : Copy > From< std::sync::Arc< T > > for MySingle< T >
/// {
/// fn from( src : std::sync::Arc<T>) -> Self {
/// Self( src )
/// }
/// }
/// impl< T : Copy > From< MySingle< T > > for std::sync::Arc< T >
/// {
/// fn from(src: MySingle<T>) -> Self
/// {
/// src.0
/// }
/// }
///
/// /* ... */
///
/// let x = MySingle( std::sync::Arc::new( 13 ) );
/// ```
///
/// ### Sample :: single with parametrized tuple.
///
/// Instead of parametrizing the element, it's possible to define a parametrized tuple.
///
///
/// ```rust
/// use type_constructor::prelude::*;
/// types!
/// {
/// #[ derive( Debug ) ]
/// pub single MySingle : < T : Copy >;
/// }
/// let x = MySingle( 13 );
/// dbg!( x );
/// ```
///
/// It gererates code:
///
/// ```rust
/// #[ derive( Debug ) ]
/// pub struct MySingle< T : Copy >( pub T );
///
/// impl< T : Copy > core::ops::Deref
/// for MySingle< T >
/// {
/// type Target = T;
/// fn deref( &self ) -> &Self::Target
/// {
/// &self.0
/// }
/// }
///
/// impl< T : Copy > From< T >
/// for MySingle< T >
/// {
/// fn from( src : T ) -> Self
/// {
/// Self( src )
/// }
/// }
///
/// let x = MySingle( 13 );
/// dbg!( 13 );
/// ```
///
/// ### Sample :: single-line pair
///
/// Sometimes you need to wrap more than a single element into a tupдe. If types of elements are different use `pair`. The same macro `types` is responsible for generating code for both `single`, `pair` and also `many`.
///
/// ```rust
/// use type_constructor::prelude::*;
///
/// types!( pub pair MyPair : i32, i64 );
/// let x = MyPair( 13, 31 );
/// println!( "x : ( {}, {} )", x.0, x.1 );
/// // prints : x : ( 13, 31 )
/// ```
///
/// It generates code:
///
/// ```rust
/// use type_constructor::prelude::*;
///
/// pub struct MyPair( pub i32, pub i64 );
///
/// impl From< ( i32, i64 ) > for MyPair
/// {
/// fn from( src : ( i32, i64 ) ) -> Self { Self( src.0, src.1 ) }
/// }
///
/// impl From< MyPair > for ( i32, i64 )
/// {
/// fn from( src : MyPair ) -> Self { ( src.0, src.1 ) }
/// }
///
/// #[cfg( feature = "make" )]
/// impl Make2< i32, i64 > for MyPair
/// {
/// fn make_2( _0 : i32, _1 : i64 ) -> Self { Self( _0, _1 ) }
/// }
///
/// /* ... */
///
/// let x = MyPair( 13, 31 );
/// println!( "x : ( {}, {} )", x.0, x.1 );
/// ```
///
/// ### Sample :: pair with parameters
///
/// Just like `single` `pair` may have parameters.
///
/// ```rust
/// use type_constructor::prelude::*;
///
/// use core::fmt;
/// types!
/// {
/// #[ derive( Debug ) ]
/// pub pair MyPair : < T1 : fmt::Debug, T2 : fmt::Debug >;
/// }
/// let x = MyPair( 13, 13.0 );
/// dbg!( x );
/// // prints : x = MyPair( 13, 13.0 )
/// ```
///
/// It generates code:
///
/// ```rust
/// use type_constructor::prelude::*;
/// use core::fmt;
///
/// #[ derive( Debug ) ]
/// pub struct MyPair< T1, T2 >( pub T1, pub T2 );
///
/// impl< T1, T2 > From<( T1, T2 )> for MyPair< T1, T2 >
/// {
/// fn from( src : ( T1, T2 ) ) -> Self { Self( src.0, src.1 ) }
/// }
///
/// impl< T1, T2 > From< MyPair< T1, T2 > > for ( T1, T2 )
/// {
/// fn from( src : MyPair< T1, T2 > ) -> Self { ( src.0, src.1 ) }
/// }
///
/// #[ cfg( feature = "make" ) ]
/// impl< T1, T2 > Make0 for MyPair< T1, T2 >
/// where
/// T1 : Default,
/// T2 : Default,
/// {
/// fn make_0() -> Self { Self( Default::default(), Default::default() ) }
/// }
///
/// #[ cfg( feature = "make" ) ]
/// impl< T1, T2 > Make2< T1, T2 > for MyPair< T1, T2 >
/// {
/// fn make_2( _0 : T1, _1 : T2 ) -> Self { Self( _0, _1 ) }
/// }
///
/// /* ... */
///
/// let x = MyPair( 13, 13.0 );
/// dbg!( x );
/// // prints : x = MyPair( 13, 13.0 )
/// ```
///
/// ### Sample :: single-line homopair
///
/// If you need to wrap pair of elements with the same type use the type constructor `pair`. The same type constructor `pair` for both `pair` and `homopair`, difference in number of types in definition, `homopair` has only one, because both its element has the same type. The same macro `types` is responsible for generating code for both `single`, `pair` and also `many`.
///
/// ```rust
/// use type_constructor::prelude::*;
///
/// types!( pub pair MyPair : i32, i64 );
/// let x = MyPair( 13, 31 );
/// println!( "x : ( {}, {} )", x.0, x.1 );
/// // prints : x : ( 13, 31 )
/// ```
///
/// It gererates code:
///
/// ```rust
/// use type_constructor::prelude::*;
///
/// pub struct MyPair( pub i32, pub i64 );
///
/// impl From< ( i32, i64 ) > for MyPair
/// {
/// fn from( src : ( i32, i64 ) ) -> Self { Self( src.0, src.1 ) }
/// }
///
/// impl From< MyPair > for ( i32, i64 )
/// {
/// fn from( src : MyPair ) -> Self { ( src.0, src.1 ) }
/// }
///
/// #[ cfg( feature = "make" ) ]
/// impl Make2< i32, i64 > for MyPair
/// {
/// fn make_2( _0 : i32, _1 : i64 ) -> Self { Self( _0, _1 ) }
/// }
///
/// /* ... */
///
/// let x = MyPair( 13, 31 );
/// println!( "x : ( {}, {} )", x.0, x.1 );
/// ```
///
/// ### Sample :: homopair with parameters
///
/// Unlike `heteropair` `homopair` has much more traits implemented for it. Among such are: `clone_as_tuple`, `clone_as_array` to clone it as either tuple or array, `as_tuple`, `as_array`, `as_slice` to reinterpret it as either tuple or array or slice, traits `From`/`Into` are implemented to convert it from/into tuple, array, slice, scalar.
///
/// ```rust
/// use type_constructor::prelude::*;
///
/// use core::fmt;
/// types!
/// {
/// #[ derive( Debug ) ]
/// pub pair MyHomoPair : < T : fmt::Debug >;
/// }
/// let x = MyHomoPair( 13, 31 );
/// dbg!( &x );
/// // prints : &x = MyHomoPair( 13, 31 )
/// let clone_as_array : [ i32 ; 2 ] = x.clone_as_array();
/// dbg!( &clone_as_array );
/// // prints : &clone_as_array = [ 13, 31 ]
/// let clone_as_tuple : ( i32 , i32 ) = x.clone_as_tuple();
/// dbg!( &clone_as_tuple );
/// // prints : &clone_as_tuple = ( 13, 31 )
/// ```
///
/// It gererates code:
///
/// ```rust
/// use type_constructor::prelude::*;
/// use core::fmt;
///
/// #[ derive( Debug ) ]
/// pub struct MyHomoPair< T >( pub T, pub T );
///
/// impl< T > core::ops::Deref for MyHomoPair< T >
/// {
/// type Target = ( T, T );
///
/// fn deref( &self ) -> &Self::Target
/// {
/// #[ cfg( debug_assertions ) ]
/// {
/// let layout1 = core::alloc::Layout::new::< Self >();
/// let layout2 = core::alloc::Layout::new::< Self::Target >();
/// debug_assert_eq!( layout1, layout2 );
/// }
/// unsafe { core::mem::transmute::< _, _ >( self ) }
/// }
/// }
///
/// impl< T > core::ops::DerefMut for MyHomoPair< T >
/// {
/// fn deref_mut( &mut self ) -> &mut Self::Target
/// {
/// #[ cfg( debug_assertions ) ]
/// {
/// let layout1 = core::alloc::Layout::new::< Self >();
/// let layout2 = core::alloc::Layout::new::< Self::Target >();
/// debug_assert_eq!( layout1, layout2 );
/// }
/// unsafe { core::mem::transmute::< _, _ >( self ) }
/// }
/// }
///
/// impl< T > From< ( T, T ) > for MyHomoPair< T >
/// {
/// fn from( src : ( T, T ) ) -> Self { Self( src.0, src.1 ) }
/// }
///
/// impl< T > From< MyHomoPair< T >> for ( T, T )
/// {
/// fn from( src : MyHomoPair< T > ) -> Self { ( src.0, src.1 ) }
/// }
///
/// impl< T > From< [ T; 2 ] > for MyHomoPair< T >
/// where
/// T : Clone,
/// {
/// fn from( src : [ T; 2 ] ) -> Self { Self( src[ 0 ].clone(), src[ 1 ].clone() ) }
/// }
///
/// impl< T > From< MyHomoPair< T >> for [ T; 2 ]
/// {
/// fn from( src : MyHomoPair< T > ) -> Self { [ src.0, src.1 ] }
/// }
///
/// impl< T > From< &[ T ] > for MyHomoPair< T >
/// where
/// T : Clone,
/// {
/// fn from( src : &[ T ] ) -> Self
/// {
/// debug_assert_eq!( src.len(), 2 );
/// Self( src[ 0 ].clone(), src[ 1 ].clone() )
/// }
/// }
///
/// impl< T > From< T > for MyHomoPair< T >
/// where
/// T : Clone,
/// {
/// fn from( src : T ) -> Self { Self( src.clone(), src.clone() ) }
/// }
///
/// impl< T > CloneAsTuple< ( T, T ) > for MyHomoPair< T >
/// where
/// T : Clone,
/// {
/// fn clone_as_tuple( &self ) -> ( T, T ) { ( self.0.clone(), self.1.clone() ) }
/// }
///
/// impl< T > CloneAsArray< T, 2 > for MyHomoPair< T >
/// where
/// T : Clone,
/// {
/// fn clone_as_array( &self ) -> [ T; 2 ] { [ self.0.clone(), self.1.clone() ] }
/// }
///
/// impl< T > AsTuple< ( T, T ) > for MyHomoPair< T >
/// {
/// fn as_tuple( &self ) -> &( T, T ) { unsafe { core::mem::transmute::< &_, &( T, T ) >( self ) } }
/// }
///
/// impl< T > AsArray< T, 2 > for MyHomoPair< T >
/// {
/// fn as_array( &self ) -> &[ T; 2 ] { unsafe { core::mem::transmute::< &_, &[ T; 2 ] >( self ) } }
/// }
///
/// impl< T > AsSlice< T > for MyHomoPair< T >
/// {
/// fn as_slice( &self ) -> &[ T ] { &self.as_array()[ .. ] }
/// }
///
/// #[ cfg( feature = "make" ) ]
/// impl< T > Make0 for MyHomoPair< T >
/// where
/// T : Default,
/// {
/// fn make_0() -> Self { Self( Default::default(), Default::default() ) }
/// }
///
/// #[ cfg( feature = "make" ) ]
/// impl< T > Make1< T > for MyHomoPair< T >
/// where
/// T : Clone,
/// {
/// fn make_1( _0 : T ) -> Self { Self( _0.clone(), _0.clone() ) }
/// }
///
/// #[ cfg( feature = "make" ) ]
/// impl< T > Make2< T, T > for MyHomoPair< T >
/// {
/// fn make_2( _0 : T, _1 : T ) -> Self { Self( _0, _1 ) }
/// }
///
/// /* ... */
///
/// let x = MyHomoPair( 13, 31 );
/// dbg!( &x );
/// // prints : &x = MyHomoPair( 13, 31 )
/// let clone_as_array : [ i32 ; 2 ] = x.clone_as_array();
/// dbg!( &clone_as_array );
/// // prints : &clone_as_array = [ 13, 31 ]
/// let clone_as_tuple : ( i32 , i32 ) = x.clone_as_tuple();
/// dbg!( &clone_as_tuple );
/// // prints : &clone_as_tuple = ( 13, 31 )
/// ```
///
/// ### Sample :: single-line many
///
/// Use type constructor `many` to wrap `Vec` in a tuple. Similar to `single` it has essential traits implemented for it.
///
/// ```rust ignore
/// use type_constructor::prelude::*;
///
/// types!( pub many MyMany : i32 );
/// let x = MyMany::from( [ 1, 2, 3 ] );
/// println!( "x : {:?}", x.0 );
/// ```
///
/// It generates code:
///
/// ```rust
/// use type_constructor::prelude::*;
///
/// pub struct MyMany( pub std::vec::Vec< i32 > );
///
/// impl core::ops::Deref for MyMany
/// {
/// type Target = std::vec::Vec< i32 >;
///
/// fn deref( &self ) -> &Self::Target { &self.0 }
/// }
///
/// impl core::ops::DerefMut for MyMany
/// {
/// fn deref_mut( &mut self ) -> &mut Self::Target { &mut self.0 }
/// }
///
/// impl From< i32 > for MyMany
/// {
/// fn from( src : i32 ) -> Self { Self( vec![ src ] ) }
/// }
///
/// impl From< ( i32, ) > for MyMany
/// {
/// fn from( src : ( i32, ) ) -> Self { Self( vec![ src.0 ] ) }
/// }
///
/// impl< const N: usize > From< [ i32; N ] > for MyMany
/// where
/// i32 : Clone,
/// {
/// fn from( src : [ i32; N ] ) -> Self { Self( std::vec::Vec::from( src ) ) }
/// }
///
/// impl From< &[ i32 ] > for MyMany
/// where
/// i32 : Clone,
/// {
/// fn from( src : &[ i32 ] ) -> Self
/// {
/// debug_assert_eq!( src.len(), 1 );
/// Self( std::vec::Vec::from( src ) )
/// }
/// }
///
/// impl AsSlice< i32 > for MyMany
/// where
/// i32 : Clone,
/// {
/// fn as_slice( &self ) -> &[ i32 ] { &self[ .. ] }
/// }
///
/// #[ cfg( feature = "make" ) ]
/// impl Make0 for MyMany
/// {
/// fn make_0() -> Self { Self( std::vec::Vec::< i32 >::new() ) }
/// }
///
/// #[ cfg( feature = "make" ) ]
/// impl Make1< i32 > for MyMany
/// {
/// fn make_1( _0 : i32 ) -> Self { Self( vec![ _0 ] ) }
/// }
///
/// #[ cfg( feature = "make" ) ]
/// impl Make2< i32, i32 > for MyMany
/// {
/// fn make_2( _0 : i32, _1 : i32 ) -> Self { Self( vec![ _0, _1 ] ) }
/// }
///
/// #[ cfg( feature = "make" ) ]
/// impl Make3< i32, i32, i32 > for MyMany
/// {
/// fn make_3( _0 : i32, _1 : i32, _2 : i32 ) -> Self { Self( vec![ _0, _1, _2 ] ) }
/// }
///
/// /* ... */
///
/// let x = MyMany::from( [ 1, 2, 3 ] );
/// println!( "x : {:?}", x.0 );
/// ```
// #[ doc = include_str!( concat!( env!( "CARGO_MANIFEST_DIR" ), "/Readme.md" ) ) ]
#[ macro_export ]
macro_rules! types
{
// No more.
(
)
=>
{
};
// No more.
(
;
)
=>
{
};
// single
(
$( #[ $Meta : meta ] )*
$Vis : vis
single
$( $Rest : tt )*
)
=>
{
$crate::_single!
{
$( #[ $Meta ] )*
$Vis single
$( $Rest )*
}
};
// pair
(
$( #[ $Meta : meta ] )*
$Vis : vis
pair
$( $Rest : tt )*
)
=>
{
$crate::_pair!
{
$( #[ $Meta ] )*
$Vis pair
$( $Rest )*
}
};
// many
(
$( #[ $Meta : meta ] )*
$Vis : vis
many
$( $Rest : tt )*
)
=>
{
$crate::_many!
{
$( #[ $Meta ] )*
$Vis many
$( $Rest )*
}
};
// bad syntax
(
$( $Rest : tt )*
)
=>
{
compile_error!
(
concat!
(
"Bad syntax.\n",
"Expects : {kind} {name} : {type}.\n",
"For example : `pub single MySingle : std::sync::Arc< T : Copy >`.\n",
"But got:\n",
stringify!
(
$( $Rest )*
),
)
);
};
}
pub use types;
}
/// Protected namespace of the module.
pub mod protected
{
pub use super::orphan::*;
}
pub use protected::*;
/// Orphan namespace of the module.
pub mod orphan
{
pub use super::exposed::*;
}
/// Exposed namespace of the module.
pub mod exposed
{
pub use super::prelude::*;
}
pub use exposed::*;
/// Prelude to use essentials: `use my_module::prelude::*`.
pub mod prelude
{
#[ doc( inline ) ]
pub use super::private::
{
types,
};
}