1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
//! A Rust implementation of the [XXHash] algorithm.
//!
//! [XXHash]: https://github.com/Cyan4973/xxHash
//!
//! ### With a fixed seed
//!
//! ```rust
//! use std::hash::BuildHasherDefault;
//! use std::collections::HashMap;
//! use twox_hash::XxHash;
//!
//! let mut hash: HashMap<_, _, BuildHasherDefault<XxHash>> = Default::default();
//! hash.insert(42, "the answer");
//! assert_eq!(hash.get(&42), Some(&"the answer"));
//! ```
//!
//! ### With a random seed
//!
//! ```rust
//! use std::collections::HashMap;
//! use twox_hash::RandomXxHashBuilder;
//!
//! let mut hash: HashMap<_, _, RandomXxHashBuilder> = Default::default();
//! hash.insert(42, "the answer");
//! assert_eq!(hash.get(&42), Some(&"the answer"));
//! ```

extern crate rand;

mod number_streams;
mod thirty_two;

pub use thirty_two::XxHash as XxHash32;
pub use thirty_two::RandomXxHashBuilder as RandomXxHashBuilder32;

use std::hash::{Hasher, BuildHasher};
use rand::Rng;
use number_streams::NumberStreams;

const CHUNK_SIZE: usize = 32;

const PRIME_1: u64 = 11400714785074694791;
const PRIME_2: u64 = 14029467366897019727;
const PRIME_3: u64 = 1609587929392839161;
const PRIME_4: u64 = 9650029242287828579;
const PRIME_5: u64 = 2870177450012600261;

#[derive(Copy,Clone,PartialEq)]
struct XxCore {
    v1: u64,
    v2: u64,
    v3: u64,
    v4: u64,
}

/// Calculates the 64-bit hash.
#[derive(Debug,Copy,Clone)]
pub struct XxHash {
    total_len: u64,
    seed: u64,
    core: XxCore,
    buffer: [u8; CHUNK_SIZE],
    buffer_usage: usize,
}

impl XxCore {
    fn with_seed(seed: u64) -> XxCore {
        XxCore {
            v1: seed.wrapping_add(PRIME_1).wrapping_add(PRIME_2),
            v2: seed.wrapping_add(PRIME_2),
            v3: seed,
            v4: seed.wrapping_sub(PRIME_1),
        }
    }

    #[inline(always)]
    fn ingest_chunks<I>(&mut self, values: I)
        where I: Iterator<Item=u64>
    {
        #[inline(always)]
        fn ingest_one_number(mut current_value: u64, mut value: u64) -> u64 {
            value = value.wrapping_mul(PRIME_2);
            current_value = current_value.wrapping_add(value);
            current_value = current_value.rotate_left(31);
            current_value.wrapping_mul(PRIME_1)
        };

        // By drawing these out, we can avoid going back and forth to
        // memory. It only really helps for large files, when we need
        // to iterate multiple times here.

        let mut v1 = self.v1;
        let mut v2 = self.v2;
        let mut v3 = self.v3;
        let mut v4 = self.v4;

        let mut values = values.peekable();

        while values.peek().is_some() {
            v1 = ingest_one_number(v1, values.next().unwrap());
            v2 = ingest_one_number(v2, values.next().unwrap());
            v3 = ingest_one_number(v3, values.next().unwrap());
            v4 = ingest_one_number(v4, values.next().unwrap());
        }

        self.v1 = v1;
        self.v2 = v2;
        self.v3 = v3;
        self.v4 = v4;
    }

    #[inline(always)]
    fn finish(&self) -> u64 {
        // The original code pulls out local vars for v[1234]
        // here. Performance tests did not show that to be effective
        // here, presumably because this method is not called in a
        // tight loop.

        let mut hash;

        hash =                   self.v1.rotate_left( 1);
        hash = hash.wrapping_add(self.v2.rotate_left( 7));
        hash = hash.wrapping_add(self.v3.rotate_left(12));
        hash = hash.wrapping_add(self.v4.rotate_left(18));

        #[inline(always)]
        fn mix_one(mut hash: u64, mut value: u64) -> u64 {
            value = value.wrapping_mul(PRIME_2);
            value = value.rotate_left(31);
            value = value.wrapping_mul(PRIME_1);
            hash ^= value;
            hash = hash.wrapping_mul(PRIME_1);
            hash.wrapping_add(PRIME_4)
        }

        hash = mix_one(hash, self.v1);
        hash = mix_one(hash, self.v2);
        hash = mix_one(hash, self.v3);
        hash = mix_one(hash, self.v4);

        hash
    }
}

impl std::fmt::Debug for XxCore {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
        write!(
            f, "XxCore {{ {:016x} {:016x} {:016x} {:016x} }}",
            self.v1, self.v2, self.v3, self.v4
        )
    }
}

impl XxHash {
    /// Constructs the hash with an initial seed
    pub fn with_seed(seed: u64) -> XxHash {
        XxHash {
            total_len: 0,
            seed: seed,
            core: XxCore::with_seed(seed),
            buffer: unsafe { ::std::mem::uninitialized() },
            buffer_usage: 0,
        }
    }
}

impl Default for XxHash {
    fn default() -> XxHash {
        XxHash::with_seed(0)
    }
}

impl Hasher for XxHash {
    fn write(&mut self, bytes: &[u8]) {
        let mut bytes = bytes;

        self.total_len += bytes.len() as u64;

        // Even with new data, we still don't have a full buffer. Wait
        // until we have a full buffer.
        if self.buffer_usage + bytes.len() < self.buffer.len() {
            unsafe {
                let tail = self.buffer.as_mut_ptr().offset(self.buffer_usage as isize);
                std::ptr::copy_nonoverlapping(bytes.as_ptr(), tail, bytes.len());
            }
            self.buffer_usage += bytes.len();
            return;
        }

        // Some data left from previous update. Fill the buffer and
        // consume it first.
        if self.buffer_usage > 0 {
            let bytes_to_use = self.buffer.len() - self.buffer_usage;
            let (to_use, leftover) = bytes.split_at(bytes_to_use);

            unsafe {
                let tail = self.buffer.as_mut_ptr().offset(self.buffer_usage as isize);
                std::ptr::copy_nonoverlapping(to_use.as_ptr(), tail, bytes_to_use);
            }

            let (iter, _) = self.buffer.u64_stream();

            self.core.ingest_chunks(iter);

            bytes = leftover;
            self.buffer_usage = 0;
        }

        // Consume the input data in large chunks
        let (iter, bytes) = bytes.u64_stream_with_stride(4);
        self.core.ingest_chunks(iter);

        // Save any leftover data for the next call
        if bytes.len() > 0 {
            unsafe {
                std::ptr::copy_nonoverlapping(bytes.as_ptr(), self.buffer.as_mut_ptr(), bytes.len());
            }
            self.buffer_usage = bytes.len();
        }
    }

    fn finish(&self) -> u64 {
        let mut hash;

        // We have processed at least one full chunk
        if self.total_len >= CHUNK_SIZE as u64 {
            hash = self.core.finish();
        } else {
            hash = self.seed.wrapping_add(PRIME_5);
        }

        hash = hash.wrapping_add(self.total_len);

        let buffered = &self.buffer[..self.buffer_usage];
        let (buffered_u64s, buffered) = buffered.u64_stream();

        for mut k1 in buffered_u64s {
            k1 = k1.wrapping_mul(PRIME_2);
            k1 = k1.rotate_left(31);
            k1 = k1.wrapping_mul(PRIME_1);
            hash ^= k1;
            hash = hash.rotate_left(27);
            hash = hash.wrapping_mul(PRIME_1);
            hash = hash.wrapping_add(PRIME_4);
        }

        let (buffered_u32s, buffered) = buffered.u32_stream();

        for k1 in buffered_u32s {
            let k1 = (k1 as u64).wrapping_mul(PRIME_1);
            hash ^= k1;
            hash = hash.rotate_left(23);
            hash = hash.wrapping_mul(PRIME_2);
            hash = hash.wrapping_add(PRIME_3);
        }

        for buffered_u8 in buffered {
            let k1 = (*buffered_u8 as u64).wrapping_mul(PRIME_5);
            hash ^= k1;
            hash = hash.rotate_left(11);
            hash = hash.wrapping_mul(PRIME_1);
        }

        // The final intermixing
        hash ^= hash >> 33;
        hash = hash.wrapping_mul(PRIME_2);
        hash ^= hash >> 29;
        hash = hash.wrapping_mul(PRIME_3);
        hash ^= hash >> 32;

        hash
    }
}

#[derive(Clone)]
/// Constructs a randomized seed and reuses it for multiple hasher instances.
pub struct RandomXxHashBuilder(u64);

impl RandomXxHashBuilder {
    fn new() -> RandomXxHashBuilder {
        RandomXxHashBuilder(rand::thread_rng().gen())
    }
}

impl Default for RandomXxHashBuilder {
    fn default() -> RandomXxHashBuilder { RandomXxHashBuilder::new() }
}

impl BuildHasher for RandomXxHashBuilder {
    type Hasher = XxHash;

    fn build_hasher(&self) -> XxHash { XxHash::with_seed(self.0) }
}

#[cfg(test)]
mod test {
    use std::hash::{Hasher, BuildHasherDefault};
    use std::collections::HashMap;
    use super::{XxHash, RandomXxHashBuilder};

    #[test]
    fn ingesting_byte_by_byte_is_equivalent_to_large_chunks() {
        let bytes: Vec<_> = (0..32).map(|_| 0).collect();

        let mut byte_by_byte = XxHash::with_seed(0);
        for byte in bytes.chunks(1) {
            byte_by_byte.write(byte);
        }

        let mut one_chunk = XxHash::with_seed(0);
        one_chunk.write(&bytes);

        assert_eq!(byte_by_byte.core, one_chunk.core);
    }

    #[test]
    fn hash_of_nothing_matches_c_implementation() {
        let mut hasher = XxHash::with_seed(0);
        hasher.write(&[]);
        assert_eq!(hasher.finish(), 0xef46db3751d8e999);
    }

    #[test]
    fn hash_of_single_byte_matches_c_implementation() {
        let mut hasher = XxHash::with_seed(0);
        hasher.write(&[42]);
        assert_eq!(hasher.finish(), 0x0a9edecebeb03ae4);
    }

    #[test]
    fn hash_of_multiple_bytes_matches_c_implementation() {
        let mut hasher = XxHash::with_seed(0);
        hasher.write(b"Hello, world!\0");
        assert_eq!(hasher.finish(), 0x7b06c531ea43e89f);
    }

    #[test]
    fn hash_of_multiple_chunks_matches_c_implementation() {
        let bytes: Vec<_> = (0..100).collect();
        let mut hasher = XxHash::with_seed(0);
        hasher.write(&bytes);
        assert_eq!(hasher.finish(), 0x6ac1e58032166597);
    }

    #[test]
    fn hash_with_different_seed_matches_c_implementation() {
        let mut hasher = XxHash::with_seed(0xae0543311b702d91);
        hasher.write(&[]);
        assert_eq!(hasher.finish(), 0x4b6a04fcdf7a4672);
    }

    #[test]
    fn hash_with_different_seed_and_multiple_chunks_matches_c_implementation() {
        let bytes: Vec<_> = (0..100).collect();
        let mut hasher = XxHash::with_seed(0xae0543311b702d91);
        hasher.write(&bytes);
        assert_eq!(hasher.finish(), 0x567e355e0682e1f1);
    }

    #[test]
    fn can_be_used_in_a_hashmap_with_a_default_seed() {
        let mut hash: HashMap<_, _, BuildHasherDefault<XxHash>> = Default::default();
        hash.insert(42, "the answer");
        assert_eq!(hash.get(&42), Some(&"the answer"));
    }

    #[test]
    fn can_be_used_in_a_hashmap_with_a_random_seed() {
        let mut hash: HashMap<_, _, RandomXxHashBuilder> = Default::default();
        hash.insert(42, "the answer");
        assert_eq!(hash.get(&42), Some(&"the answer"));
    }
}