1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
use std::cell::RefCell; use std::fmt::Debug; use std::rc::Rc; use std::thread; use std::time::Duration; #[cfg(not(target_arch = "wasm32"))] use crate::event::{Event, MouseButton}; use crate::radians::{self, Radians}; use crate::turtle_window::TurtleWindow; use crate::{Color, Drawing, Point, Speed}; #[derive(Debug, Clone, Copy, PartialEq, Eq)] enum AngleUnit { Degrees, Radians, } impl AngleUnit { fn to_radians(self, angle: Angle) -> Radians { match self { AngleUnit::Degrees => Radians::from_degrees_value(angle), AngleUnit::Radians => Radians::from_radians_value(angle), } } fn to_angle(self, angle: Radians) -> Angle { match self { AngleUnit::Degrees => angle.to_degrees(), AngleUnit::Radians => angle.to_radians(), } } } /// Any distance value (positive or negative) pub type Distance = f64; /// An angle value without a unit /// /// The unit with which this angle will be interpreted depends on whether the Turtle is set to use /// degrees or radians. See the [`use_degrees()`](struct.Turtle.html#method.use_degrees) or /// [`use_radians()`](struct.Turtle.html#method.use_radians) methods for more information. pub type Angle = f64; /// A turtle with a pen attached to its tail /// /// **The idea:** You control a turtle with a pen tied to its tail. As it moves /// across the screen, it draws the path that it follows. You can use this to draw /// any picture you want just by moving the turtle across the screen. /// ///  /// /// See the documentation for the methods below to learn about the different drawing commands you /// can use with the turtle. pub struct Turtle { window: Rc<RefCell<TurtleWindow>>, drawing: Drawing, angle_unit: AngleUnit, } impl Default for Turtle { fn default() -> Self { Self::new() } } impl Turtle { /// Create a new turtle. /// /// This will immediately open a new window with the turtle at the center. As each line in /// your program runs, the turtle shown in the window will update. /// /// ```rust,no_run /// # #![allow(unused_variables, unused_mut)] /// use turtle::Turtle; /// /// fn main() { /// let mut turtle = Turtle::new(); /// // Do things with the turtle... /// } /// ``` /// /// **Note:** If you do not create the `Turtle` right at the beginning of `main()`, call /// [`turtle::start()`](fn.start.html) in order to avoid any problems. pub fn new() -> Turtle { let window = Rc::new(RefCell::new(TurtleWindow::new())); Turtle { window: window.clone(), drawing: Drawing::with_window(window), angle_unit: AngleUnit::Degrees, } } /// Move the turtle forward by the given amount of `distance`. If the pen is down, the turtle /// will draw a line as it moves. /// /// The turtle takes very small steps (measured in "pixels"). So if you want it to move more, /// use a bigger value to make the turtle walk further. /// The `distance` can be a negative value in which case the turtle will move backward. /// /// # Example /// /// ```rust /// # use turtle::Turtle; /// # let mut turtle = Turtle::new(); /// // Move forward 10 tiny turtle steps, drawing a line as you move /// turtle.forward(10.0); /// /// // Move forward 100 tiny turtle steps, drawing a much longer line /// turtle.forward(100.0); /// /// // Move backward 223 tiny turtle steps, without drawing anything /// turtle.pen_up(); /// turtle.forward(-223.0); /// # assert_eq!(turtle.position().y.round(), -113.0); /// ``` pub fn forward(&mut self, distance: Distance) { self.window.borrow_mut().forward(distance); } /// Move the turtle backwards by the given amount of `distance`. If the pen is down, the turtle /// will draw a line as it moves. /// /// The turtle takes very small steps (measured in "pixels"). So if you want it to move more, /// use a bigger value to make the turtle walk further. /// The `distance` can be a negative value in which case the turtle will move forward. /// /// # Example /// /// ```rust /// # use turtle::Turtle; /// # let mut turtle = Turtle::new(); /// // Move backward 10 tiny turtle steps, drawing a line as you move /// turtle.backward(10.0); /// /// // Move backward 100 tiny turtle steps, drawing a much longer line /// turtle.backward(100.0); /// /// // Move forward 179 tiny turtle steps, without drawing anything /// turtle.pen_up(); /// turtle.backward(-179.0); /// # assert_eq!(turtle.position().y.round(), 69.0); /// ``` pub fn backward(&mut self, distance: Distance) { // Moving backwards is essentially moving forwards with a negative distance self.window.borrow_mut().forward(-distance); } /// Instruct the turtle to turn right (clockwise) by the given angle. Since the turtle rotates /// in place, its position will not change and it will not draw anything while it turns. /// /// The `angle` parameter is a floating point number that represents how much you want the /// turtle to rotate. /// The unit of `angle` is "degrees" by default. You can change that by using the /// [`use_degrees()`](struct.Turtle.html#method.use_degrees) or /// [`use_radians()`](struct.Turtle.html#method.use_radians) methods. /// /// # Example /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// // rotate right by 30 degrees /// turtle.right(30.0); /// /// // rotate right by 1 radian (57.2957795 degrees) /// turtle.use_radians(); /// turtle.right(1.0); /// // Use PI for precise angles in radians /// use std::f64::consts::PI; /// // This is the same as turning 45.0 degrees /// turtle.right(PI/4.0); /// # // Calculate the angle that should result from the above rotations /// # let expected = (90f64 - 30f64).to_radians() - 1.0 - PI/4.0; /// # // Need to properly normalize the angle so that it can be checked /// # // We only perform a normalization in `right`, and not `left` because the angle resulting /// # // from the rotations is negative. /// # let expected = expected - (2.0*PI) * (expected / (2.0*PI)).floor(); /// # let expected = (expected * 1e5).trunc(); /// # assert_eq!((turtle.heading() * 1e5).trunc(), expected); /// ``` pub fn right(&mut self, angle: Angle) { let angle = self.angle_unit.to_radians(angle); self.window.borrow_mut().rotate(angle, true); } /// Instruct the turtle to turn left (counterclockwise) by the given angle. Since the turtle /// rotates in place, its position will not change and it will not draw anything while it /// turns. /// /// The `angle` parameter is a floating point number that represents how much you want the /// turtle to rotate. /// The unit of `angle` is "degrees" by default. You can change that by using the /// [`use_degrees()`](struct.Turtle.html#method.use_degrees) or /// [`use_radians()`](struct.Turtle.html#method.use_radians) methods. /// /// # Example /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// // rotate left by 30 degrees /// turtle.left(30.0); /// /// // rotate left by 1 radian (57.2957795 degrees) /// turtle.use_radians(); /// turtle.left(1.0); /// // Use PI for precise angles in radians /// use std::f64::consts::PI; /// // This is the same as turning 45.0 degrees /// turtle.left(PI/4.0); /// # assert_eq!( /// # (turtle.heading() * 1e5).trunc(), /// # (((90f64 + 30f64).to_radians() + 1.0 + PI/4.0) * 1e5).trunc() /// # ); /// ``` pub fn left(&mut self, angle: Angle) { let angle = self.angle_unit.to_radians(angle); self.window.borrow_mut().rotate(angle, false); } /// Waits for the specified number of seconds before executing the next command. /// /// ```rust,no_run /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// turtle.forward(100.0); /// turtle.wait(2.0); /// // The turtle will stop for 2 seconds before proceeding to this line /// turtle.forward(50.0); /// ``` pub fn wait(&mut self, secs: f64) { if !secs.is_normal() { return; } thread::sleep(Duration::from_millis((secs * 1000.0) as u64)); } /// Retrieve a read-only reference to the drawing. /// /// See the documentation for the [`Drawing` struct](struct.Drawing.html) for a complete /// listing of the information that you can retrieve from the drawing. pub fn drawing(&self) -> &Drawing { &self.drawing } /// Retrieve a mutable reference to the drawing /// /// See the documentation for the [`Drawing` struct](struct.Drawing.html) for a complete /// listing of the ways that you can manipulate the drawing. pub fn drawing_mut(&mut self) -> &mut Drawing { &mut self.drawing } /// Returns the current speed of the turtle. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// turtle.set_speed(8); /// assert_eq!(turtle.speed(), 8); /// ``` /// /// See the documentation for the [`Speed` struct](struct.Speed.html) for more information. pub fn speed(&self) -> Speed { self.window.borrow().fetch_turtle().speed } /// Set the turtle's movement and rotation speed to the given value. A higher value will make /// the turtle's walking and turning animations faster. /// /// You can pass either a number or certain strings like `"slow"`, `"normal"`, and `"fast"`. /// See the documentation for the [`Speed` struct](struct.Speed.html) for all of the different /// options as well as the valid range of numbers that can be used for speeds. /// /// ```rust,no_run /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// turtle.set_speed("normal"); /// turtle.set_speed("fast"); /// turtle.set_speed(2); /// turtle.set_speed(12); /// turtle.set_speed("slower"); /// // Constructing a Speed directly works too, but the syntax above is often more convenient /// turtle.set_speed(Speed::from(2)); /// ``` /// /// Any invalid string or numeric value outside of the valid range will cause the program to /// `panic!` at runtime. /// /// # Moving Instantly /// /// Setting the speed to `"instant"` results in no animation. The turtle moves instantly /// and turns instantly. This is often used to position the turtle before you start to draw /// something. You can set the speed to instant, move the turtle into the position you want to /// start your drawing from and then set the speed back to `"normal"`. /// /// ```rust,no_run /// # use turtle::*; /// let mut turtle = Turtle::new(); /// turtle.set_speed("instant"); /// // Move to a position 300 steps to the left of the start position /// turtle.right(90.0); /// turtle.backward(300.0); /// /// // The turtle is in position we want it to start at, /// // so let's set the speed back to normal /// turtle.set_speed("normal"); /// // Start drawing from here... /// ``` /// /// # Conversion Traits /// /// So how does this method work? Why can it accept completely different types as input to the /// same function? /// /// Using this method is an excellent way to learn about the conversion traits [`From`] and /// [`Into`]. This method takes a *generic type* as its speed parameter. By specifying the type /// as `S: Into<Speed>`, we are telling the Rust compiler that we want to accept any type /// that can be converted into a [`Speed`]. /// /// ```rust,no_run /// # use turtle::*; /// # struct T {speed: Speed} impl T { /// // This is (essentially) how Turtle::set_speed is implemented /// fn set_speed<S: Into<Speed>>(&mut self, speed: S) { /// // Calling `.into()` converts the value of `speed` into type `Speed`. /// // The `.into()` method is defined in the `Into` trait and is implemented by `Speed` /// // for `i32` and `&str` /// // `S: Into<Speed>` makes the compiler guarantee that this method exists and returns /// // exactly the type that we expect /// let speed: Speed = speed.into(); /// self.speed = speed; /// } /// # } /// /// // This makes it possible to pass in any type that can be converted into a `Speed` /// fn main() { /// let mut turtle = Turtle::new(); /// /// // The following works because `Speed` defined a conversion from `i32` /// turtle.set_speed(1); /// /// // The following works because `Speed` defined a conversion from `&str` /// turtle.set_speed("fast"); /// } /// ``` /// /// The [`Speed`] documentation describes the different types that it can be converted from in /// detail. For other types and in other crates where this may not be explicitly documented, /// you can always find this information by looking for implementations of the [`From`] trait. /// /// [`Speed`] implements [`From`] for several types: /// /// * [`impl From<&str> for Speed`](struct.Speed.html#impl-From%3C%26%27a%20str%3E) /// * [`impl From<i32> for Speed`](struct.Speed.html#impl-From%3Ci32%3E) /// * etc. /// /// Why look for [`From`] and not [`Into`]? It turns out that the Rust compiler knows a rule that says /// "if some type A can be converted **from** type B, type B can be converted **into** type A." /// That is why most types only implement [`From`] and leave [`Into`] to automatically be /// derived based on the rule. /// See the documentation of the [`Into`] trait for the "blanket implementation" which defines /// that rule. /// /// [`Speed`]: struct.Speed.html /// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html /// [`Into`]: https://doc.rust-lang.org/std/convert/trait.Into.html pub fn set_speed<S: Into<Speed>>(&mut self, speed: S) { self.window.borrow_mut().with_turtle_mut(|turtle| turtle.speed = speed.into()); } /// Returns the turtle's current location (x, y) /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// turtle.forward(100.0); /// let pos = turtle.position(); /// assert_eq!(pos.round(), Point {x: 0.0, y: 100.0}); /// ``` pub fn position(&self) -> Point { self.window.borrow().fetch_turtle().position } /// Moves the turtle directly to the given position. See the [`Point` struct](struct.Point.html) /// documentation for more information. /// /// If the pen is down, this will draw a line. The turtle will not turn to face the direction /// in which it is moving. It's heading will stay the same. /// Use [`set_speed()`](struct.Turtle.html#method.set_speed) to control the animation speed. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// let heading = turtle.heading(); /// assert_eq!(turtle.position(), Point {x: 0.0, y: 0.0}); /// turtle.go_to([100.0, -150.0]); /// // The heading has not changed, but the turtle has moved to the new position /// assert_eq!(turtle.heading(), heading); /// assert_eq!(turtle.position(), Point {x: 100.0, y: -150.0}); /// ``` pub fn go_to<P: Into<Point>>(&mut self, position: P) { self.window.borrow_mut().go_to(position.into()); } /// Goes to the given x-coordinate, keeping the y-coordinate and heading of the turtle the /// same. See [`go_to()`](struct.Turtle.html#method.go_to) for more information. pub fn set_x(&mut self, x: f64) { let y = self.position().y; self.go_to([x, y]); } /// Goes to the given y-coordinate, keeping the x-coordinate and heading of the turtle the /// same. See [`go_to()`](struct.Turtle.html#method.go_to) for more information. pub fn set_y(&mut self, y: f64) { let x = self.position().x; self.go_to([x, y]); } /// Moves instantaneously to the origin and resets the heading to face north. /// /// ```rust /// # use turtle::*; /// let mut turtle = Turtle::new(); /// let start_position = turtle.position().round(); /// let start_heading = turtle.heading().round(); /// turtle.right(55.0); /// turtle.forward(127.0); /// assert_ne!(turtle.heading().round(), start_heading); /// assert_ne!(turtle.position().round(), start_position); /// turtle.home(); /// assert_eq!(turtle.heading().round(), start_heading); /// assert_eq!(turtle.position().round(), start_position); /// ``` pub fn home(&mut self) { self.window.borrow_mut().with_turtle_mut(|turtle| { turtle.position = Point::origin(); turtle.heading = radians::PI / 2.0; }); } /// Returns the turtle's current heading. /// /// The unit of the returned angle is degrees by default, but can be set using the /// [`use_degrees()`](struct.Turtle.html#method.use_degrees) or /// [`use_radians()`](struct.Turtle.html#method.use_radians) methods. /// /// The heading is relative to the positive x axis (east). When first created, the turtle /// starts facing north. That means that its heading is 90.0 degrees. The following chart /// contains many common directions and their angles. /// /// | Cardinal Direction | Heading (degrees) | Heading (radians) | /// | ------------------ | ----------------- | ----------------- | /// | East | 0.0° | `0.0` | /// | North | 90.0° | `PI/2` | /// | West | 180.0° | `PI` | /// | South | 270.0° | `3*PI/2` | /// /// You can test the result of `heading()` with these values to see if the turtle is facing /// a certain direction. /// /// ```rust /// # use turtle::*; /// // Turtles start facing north /// let mut turtle = Turtle::new(); /// // The rounding is to account for floating-point error /// assert_eq!(turtle.heading().round(), 90.0); /// turtle.right(31.0); /// assert_eq!(turtle.heading().round(), 59.0); /// turtle.left(193.0); /// assert_eq!(turtle.heading().round(), 252.0); /// turtle.left(130.0); /// // Angles should not exceed 360.0 /// assert_eq!(turtle.heading().round(), 22.0); /// ``` pub fn heading(&self) -> Angle { let heading = self.window.borrow().fetch_turtle().heading; self.angle_unit.to_angle(heading) } /// Rotate the turtle so that its heading is the given angle. /// /// The unit of `angle` is degrees by default, but can be set using the /// [`use_degrees()`](struct.Turtle.html#method.use_degrees) or /// [`use_radians()`](struct.Turtle.html#method.use_radians) methods. /// /// The turtle will attempt to rotate as little as possible in order to reach the given heading /// (between -180 and 179 degrees). /// Use [`set_speed()`](struct.Turtle.html#method.set_speed) to control the animation speed. /// /// Here are some common directions in degrees and radians: /// /// | Cardinal Direction | Heading (degrees) | Heading (radians) | /// | ------------------ | ----------------- | ----------------- | /// | East | 0.0° | `0.0` | /// | North | 90.0° | `PI/2` | /// | West | 180.0° | `PI` | /// | South | 270.0° | `3*PI/2` | /// /// See [`heading()`](struct.Turtle.html#method.heading) for more information. /// /// # Example /// /// ```rust /// # use turtle::*; /// // Turtles start facing north /// let mut turtle = Turtle::new(); /// // The rounding is to account for floating-point error /// assert_eq!(turtle.heading().round(), 90.0); /// turtle.set_heading(31.0); /// assert_eq!(turtle.heading().round(), 31.0); /// turtle.set_heading(293.0); /// assert_eq!(turtle.heading().round(), 293.0); /// turtle.set_heading(1.0); /// assert_eq!(turtle.heading().round(), 1.0); /// // Angles should not exceed 360.0, even when we set them to values larger than that /// turtle.set_heading(367.0); /// assert_eq!(turtle.heading().round(), 7.0); /// ``` pub fn set_heading(&mut self, angle: Angle) { let angle = self.angle_unit.to_radians(angle); let heading = self.window.borrow().fetch_turtle().heading; // Find the amount we need to turn to reach the target heading based on our current heading let angle = angle - heading; // Normalize the angle to be between -180 and 179 so that we rotate as little as possible // Formula from: https://stackoverflow.com/a/24234924/551904 let angle = angle - radians::TWO_PI * ((angle + radians::PI) / radians::TWO_PI).floor(); self.window.borrow_mut().rotate(angle, false); } /// Returns true if `Angle` values will be interpreted as degrees. /// /// See [`use_degrees()`](struct.Turtle.html#method.use_degrees) for more information. pub fn is_using_degrees(&self) -> bool { self.angle_unit == AngleUnit::Degrees } /// Returns true if `Angle` values will be interpreted as radians. /// /// See [`use_radians()`](struct.Turtle.html#method.use_degrees) for more information. pub fn is_using_radians(&self) -> bool { self.angle_unit == AngleUnit::Radians } /// Change the angle unit to degrees. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// # turtle.use_radians(); /// assert!(!turtle.is_using_degrees()); /// turtle.use_degrees(); /// assert!(turtle.is_using_degrees()); /// /// // This will now be interpreted as 1.0 degree /// turtle.right(1.0); /// ``` pub fn use_degrees(&mut self) { self.angle_unit = AngleUnit::Degrees; } /// Change the angle unit to radians. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// assert!(!turtle.is_using_radians()); /// turtle.use_radians(); /// assert!(turtle.is_using_radians()); /// /// // This will now be interpreted as 1.0 radian /// turtle.right(1.0); /// ``` pub fn use_radians(&mut self) { self.angle_unit = AngleUnit::Radians; } /// Return true if pen is down, false if it’s up. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// assert!(turtle.is_pen_down()); /// turtle.pen_up(); /// assert!(!turtle.is_pen_down()); /// turtle.pen_down(); /// assert!(turtle.is_pen_down()); /// ``` pub fn is_pen_down(&self) -> bool { self.window.borrow().fetch_turtle().pen.enabled } /// Pull the pen down so that the turtle draws while moving. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// # turtle.pen_up(); /// assert!(!turtle.is_pen_down()); /// // This will move the turtle, but not draw any lines /// turtle.forward(100.0); /// turtle.pen_down(); /// assert!(turtle.is_pen_down()); /// // The turtle will now draw lines again /// turtle.forward(100.0); /// ``` pub fn pen_down(&mut self) { self.window.borrow_mut().with_turtle_mut(|turtle| turtle.pen.enabled = true); } /// Pick the pen up so that the turtle does not draw while moving /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// assert!(turtle.is_pen_down()); /// // The turtle will move and draw a line /// turtle.forward(100.0); /// turtle.pen_up(); /// assert!(!turtle.is_pen_down()); /// // Now, the turtle will move, but not draw anything /// turtle.forward(100.0); /// ``` pub fn pen_up(&mut self) { self.window.borrow_mut().with_turtle_mut(|turtle| turtle.pen.enabled = false); } /// Returns the size (thickness) of the pen. The thickness is measured in pixels. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// turtle.set_pen_size(25.0); /// assert_eq!(turtle.pen_size(), 25.0); /// ``` /// /// See [`set_pen_size()`](struct.Turtle.html#method.set_pen_size) for more details. pub fn pen_size(&self) -> f64 { self.window.borrow().fetch_turtle().pen.thickness } /// Sets the thickness of the pen to the given size. The thickness is measured in pixels. /// /// The turtle's pen has a flat tip. The value you set the pen's size to will change the /// width of the stroke created by the turtle as it moves. See the example below for more /// about what this means. /// /// # Example /// /// ```rust,no_run /// use turtle::Turtle; /// /// fn main() { /// let mut turtle = Turtle::new(); /// /// turtle.pen_up(); /// turtle.right(90.0); /// turtle.backward(300.0); /// turtle.pen_down(); /// /// turtle.set_pen_color("#2196F3"); // blue /// turtle.set_pen_size(1.0); /// turtle.forward(200.0); /// /// turtle.set_pen_color("#f44336"); // red /// turtle.set_pen_size(50.0); /// turtle.forward(200.0); /// /// turtle.set_pen_color("#4CAF50"); // green /// turtle.set_pen_size(100.0); /// turtle.forward(200.0); /// } /// ``` /// /// This will produce the following: /// ///  /// /// Notice that while the turtle travels in a straight line, it produces different thicknesses /// of lines which appear like large rectangles. pub fn set_pen_size(&mut self, thickness: f64) { assert!( thickness >= 0.0 && thickness.is_finite(), "Invalid thickness: {}. The pen thickness must be greater than or equal to zero", thickness ); self.window.borrow_mut().with_turtle_mut(|turtle| turtle.pen.thickness = thickness); } /// Returns the color of the pen. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// turtle.set_pen_color("blue"); /// assert_eq!(turtle.pen_color(), "blue".into()); /// ``` /// /// See the [`color` module](color/index.html) for more information about colors. pub fn pen_color(&self) -> Color { self.window.borrow().fetch_turtle().pen.color } /// Sets the color of the pen to the given color. /// /// Any type that can be converted into a color can be passed into this function. /// See the [`color` module](color/index.html) for more information. /// /// # Example /// /// ```rust,no_run /// use turtle::Turtle; /// /// fn main() { /// let mut turtle = Turtle::new(); /// turtle.drawing_mut().set_background_color("light grey"); /// turtle.set_pen_size(3.0); /// /// let colors = ["red", "green", "blue"]; /// /// for i in 0..36 { /// turtle.set_pen_color(colors[i % colors.len()]); /// turtle.forward(25.0); /// turtle.right(10.0); /// } /// } /// ``` /// /// This will produce the following: /// ///  pub fn set_pen_color<C: Into<Color> + Copy + Debug>(&mut self, color: C) { let pen_color = color.into(); assert!( pen_color.is_valid(), "Invalid color: {:?}. See the color module documentation for more information.", color ); self.window.borrow_mut().with_turtle_mut(|turtle| turtle.pen.color = pen_color); } /// Returns the current fill color. /// /// This will be used to fill the shape when /// [`begin_fill()`](struct.Turtle.html#method.begin_fill) and /// [`end_fill()`](struct.Turtle.html#method.end_fill) are called. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// turtle.set_fill_color("coral"); /// assert_eq!(turtle.fill_color(), "coral".into()); /// ``` /// /// See the [`color` module](color/index.html) for more information about colors. pub fn fill_color(&self) -> Color { self.window.borrow().fetch_turtle().fill_color } /// Sets the fill color to the given color. /// /// **Note:** The fill color must be set **before** `begin_fill()` is called in order to be /// used when filling the shape. /// /// Any type that can be converted into a color can be passed into this function. /// See the [`color` module](color/index.html) for more information. /// /// # Example /// /// See [`begin_fill()`](struct.Turtle.html#method.begin_fill) for an example. pub fn set_fill_color<C: Into<Color> + Copy + Debug>(&mut self, color: C) { let fill_color = color.into(); assert!( fill_color.is_valid(), "Invalid color: {:?}. See the color module documentation for more information.", color ); self.window.borrow_mut().with_turtle_mut(|turtle| turtle.fill_color = fill_color); } /// Return true if the turtle is currently filling the shape drawn /// by its movements. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// assert!(!turtle.is_filling()); /// turtle.begin_fill(); /// assert!(turtle.is_filling()); /// turtle.end_fill(); /// assert!(!turtle.is_filling()); /// ``` /// /// See [`begin_fill()`](struct.Turtle.html#method.begin_fill) for more /// information and an example. pub fn is_filling(&self) -> bool { self.window.borrow().fetch_turtle().is_filling } /// Begin filling the shape drawn by the turtle's movements. /// /// **Rule of thumb:** For every call to [`begin_fill()`](struct.Turtle.html#method.begin_fill), /// there should be a corresponding call to [`end_fill()`](struct.Turtle.html#method.end_fill). /// /// # Example /// /// The following example will draw a circle filled with the color red and then a square with /// no fill. /// /// **Note:** The fill color must be set **before** `begin_fill()` is called in order to be /// used when filling the shape. /// /// ```rust,no_run /// use turtle::Turtle; /// /// fn main() { /// let mut turtle = Turtle::new(); /// turtle.right(90.0); /// turtle.set_pen_size(3.0); /// /// turtle.set_pen_color("blue"); /// turtle.set_fill_color("red"); /// turtle.begin_fill(); /// for _ in 0..360 { /// turtle.forward(2.0); /// turtle.right(1.0); /// } /// turtle.end_fill(); /// /// turtle.set_pen_color("green"); /// turtle.forward(120.0); /// for _ in 0..3 { /// turtle.right(90.0); /// turtle.forward(240.0); /// } /// turtle.right(90.0); /// turtle.forward(120.0); /// } /// ``` /// /// This will result in the following: /// ///  pub fn begin_fill(&mut self) { self.window.borrow_mut().begin_fill(); } /// Stop filling the shape drawn by the turtle's movements. /// /// **Rule of thumb:** For every call to [`begin_fill()`](struct.Turtle.html#method.begin_fill), /// there should be a corresponding call to [`end_fill()`](struct.Turtle.html#method.end_fill). /// /// See [`begin_fill()`](struct.Turtle.html#method.begin_fill) for more information. pub fn end_fill(&mut self) { self.window.borrow_mut().end_fill(); } /// Returns true if the turtle is visible. /// /// ```rust /// # use turtle::*; /// let mut turtle = Turtle::new(); /// assert!(turtle.is_visible()); /// turtle.hide(); /// assert!(!turtle.is_visible()); /// turtle.show(); /// assert!(turtle.is_visible()); /// ``` pub fn is_visible(&self) -> bool { self.window.borrow().fetch_turtle().visible } /// Makes the turtle invisible. The shell will not be shown, but drawings will continue. /// /// Useful for some complex drawings. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// assert!(turtle.is_visible()); /// turtle.hide(); /// assert!(!turtle.is_visible()); /// ``` pub fn hide(&mut self) { self.window.borrow_mut().with_turtle_mut(|turtle| turtle.visible = false); } /// Makes the turtle visible. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// # turtle.hide(); /// assert!(!turtle.is_visible()); /// turtle.show(); /// assert!(turtle.is_visible()); /// ``` pub fn show(&mut self) { self.window.borrow_mut().with_turtle_mut(|turtle| turtle.visible = true); } /// Delete the turtle's drawings from the screen, re-center the turtle and reset all of the /// turtle's state (speed, color, etc.) back to the default. /// /// ```rust /// # use turtle::*; /// # let mut turtle = Turtle::new(); /// turtle.left(43.0); /// turtle.forward(289.0); /// turtle.set_pen_color("red"); /// turtle.drawing_mut().set_background_color("green"); /// let position = turtle.position(); /// let heading = turtle.heading(); /// turtle.reset(); /// assert_eq!(turtle.heading(), 90.0); /// assert_eq!(turtle.position(), Point {x: 0.0, y: 0.0}); /// assert_ne!(turtle.pen_color(), "red".into()); /// assert_ne!(turtle.drawing().background_color(), "green".into()); /// ``` pub fn reset(&mut self) { self.clear(); self.window.borrow_mut().with_turtle_mut(|turtle| *turtle = Default::default()); self.window.borrow_mut().with_drawing_mut(|drawing| *drawing = Default::default()); } /// Delete the turtle's drawings from the screen. /// /// Does not move turtle. Position, speed and heading of the turtle are not affected. The /// background color and any other settings (pen color, size, etc.) all remain the same. /// /// # Example /// /// ```rust,no_run /// use turtle::Turtle; /// /// fn main() { /// let mut turtle = Turtle::new(); /// turtle.right(32.0); /// turtle.forward(150.0); /// /// turtle.wait_for_click(); /// turtle.clear(); /// } /// ``` /// /// This will produce the following: /// ///  /// /// Once you click on the screen, the drawings will be cleared: /// ///  pub fn clear(&mut self) { self.window.borrow_mut().clear(); } /// Rotates the turtle to face the given point. See the [`Point` struct](struct.Point.html) /// documentation for more information. /// /// If the coordinates are the same as the turtle's current position, no rotation takes place. /// Always rotates the least amount necessary in order to face the given point. /// /// # Example /// /// ```rust,no_run /// use turtle::Turtle; /// /// fn main() { /// let mut turtle = Turtle::new(); /// // moving the turtle to the bottom on the screen in the middle /// turtle.pen_up(); /// turtle.go_to([0.0, -300.0]); /// turtle.set_heading(90.0); /// turtle.pen_down(); /// /// // the turtle will go up following an oscillating point /// let mut i: f64 = 0.0; /// // choosing an arbitrary constant to multiply /// // the cos function, result between -5000 and 5000 /// let c = 5000.0; /// // just draw a few full cicles /// while i < 15.0 { /// let f = (i).cos()*c; /// // following the oscillating point above at y=1000 /// turtle.turn_towards([f, 1000.0]); /// // going forward for a small amount /// turtle.forward(1.0); /// // incrementing the angle /// i = i + 0.01; /// } /// } /// ``` pub fn turn_towards<P: Into<Point>>(&mut self, target: P) { let target: Point = target.into(); let position = self.position(); // If the target is (approximately) on the turtle don't turn if (target - position).is_not_normal() { return; } let heading = self.window.borrow().fetch_turtle().heading; // Calculate the target angle to reach let angle = (target - position).atan2(); let angle = Radians::from_radians_value(angle); // Calculate how much turning will be needed (angle - heading) // And clamp it make sure the turtle doesn't turn more than 360 degrees let angle = (angle - heading) % radians::TWO_PI; // Try to rotate as little as possible let angle = if angle.abs() > radians::PI { // Use signum to make sure the angle has the right sign // And the turtle turns the right way -angle.signum() * (radians::TWO_PI - angle.abs()) } else { angle }; self.window.borrow_mut().rotate(angle, false); } /// Convenience function that waits for a click to occur before returning. /// /// Useful for when you want the turtle to wait for the user to click before continuing. Use /// this to force the turtle to wait before it starts drawing at the beginning of your program. /// /// This method uses [`poll_event()`](struct.Drawing.html#method.poll_event) internally and /// ignores any other events that take place before the click is received. /// /// # Example /// /// ```rust,no_run /// use turtle::Turtle; /// /// fn main() { /// let mut turtle = Turtle::new(); /// turtle.wait_for_click(); /// // The turtle will wait for the screen to be clicked before continuing /// turtle.forward(100.0); /// } /// ``` #[cfg(not(target_arch = "wasm32"))] //FIXME: Port to WASM pub fn wait_for_click(&mut self) { loop { if let Some(Event::MouseButtonReleased(MouseButton::Left)) = self.drawing_mut().poll_event() { break; } // Sleep for ~1 frame (at 120fps) to avoid pegging the CPU. thread::sleep(Duration::from_millis(1000 / 120)); } } } #[cfg(test)] mod tests { use super::*; #[test] fn is_using_radians_degrees() { // is_using_radians and is_using_degrees should be inverses of each other let mut turtle = Turtle::new(); assert!(!turtle.is_using_radians()); assert!(turtle.is_using_degrees()); turtle.use_radians(); assert!(turtle.is_using_radians()); assert!(!turtle.is_using_degrees()); turtle.use_degrees(); assert!(!turtle.is_using_radians()); assert!(turtle.is_using_degrees()); } #[test] fn clear_leaves_position_and_heading() { let mut turtle = Turtle::new(); assert_eq!(turtle.position(), Point::origin()); assert_eq!(turtle.heading(), 90.0); turtle.forward(100.0); turtle.set_heading(51.0); turtle.clear(); // The rounding is to account for floating-point error assert_eq!(turtle.position().round(), Point { x: 0.0, y: 100.0 }); assert_eq!(turtle.heading(), 51.0); } #[test] fn turn_towards() { let mut turtle = Turtle::new(); // Turn from each cardinal direction to each cardinal direction for n in 0..16 as u32 { let original_angle = radians::TWO_PI * n as f64 / 16.0; for i in 0..16 as u32 { turtle.turn_towards([original_angle.cos(), original_angle.sin()]); assert_eq!(turtle.heading().ceil(), original_angle.to_degrees().ceil()); let target_angle = radians::TWO_PI * i as f64 / 16.0; turtle.turn_towards([target_angle.cos(), target_angle.sin()]); assert_eq!(turtle.heading().ceil(), target_angle.to_degrees().ceil()); } } } #[test] #[should_panic(expected = "Invalid thickness: -10. The pen thickness must be greater than or equal to zero")] fn set_pen_size_rejects_negative() { let mut turtle = Turtle::new(); turtle.set_pen_size(-10.0); } #[test] #[should_panic(expected = "Invalid thickness: NaN. The pen thickness must be greater than or equal to zero")] fn set_pen_size_rejects_nan() { let mut turtle = Turtle::new(); turtle.set_pen_size(::std::f64::NAN); } #[test] #[should_panic(expected = "Invalid thickness: inf. The pen thickness must be greater than or equal to zero")] fn set_pen_size_rejects_inf() { let mut turtle = Turtle::new(); turtle.set_pen_size(::std::f64::INFINITY); } #[test] #[should_panic(expected = "Invalid thickness: -inf. The pen thickness must be greater than or equal to zero")] fn set_pen_size_rejects_neg_inf() { let mut turtle = Turtle::new(); turtle.set_pen_size(-::std::f64::INFINITY); } #[test] #[should_panic( expected = "Invalid color: Color { red: NaN, green: 0.0, blue: 0.0, alpha: 0.0 }. See the color module documentation for more information." )] fn rejects_invalid_pen_color() { let mut turtle = Turtle::new(); turtle.set_pen_color(Color { red: ::std::f64::NAN, green: 0.0, blue: 0.0, alpha: 0.0, }); } #[test] #[should_panic( expected = "Invalid color: Color { red: NaN, green: 0.0, blue: 0.0, alpha: 0.0 }. See the color module documentation for more information." )] fn rejects_invalid_fill_color() { let mut turtle = Turtle::new(); turtle.set_fill_color(Color { red: ::std::f64::NAN, green: 0.0, blue: 0.0, alpha: 0.0, }); } }