1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
use std::ops::{Add, Div, Index, IndexMut, Mul, Sub};

use interpolation::Spatial;
use rand::{
    distributions::{Distribution, Standard},
    RandomRange, Rng,
};

/// A point in 2D space
///
/// # Creating a Point
///
/// Methods like [`Turtle::go_to()`], [`Turtle::turn_towards()`] and [`Drawing::set_center()`]
/// all support any type that can be converted into `Point`. That means that you can pass the
/// same value into those methods in several different ways depending on what you prefer:
///
/// ```rust
/// # use turtle::Turtle;
/// # let mut turtle = Turtle::new();
/// // These are equivalent
/// turtle.go_to([100.0, 40.0]);
/// turtle.go_to((100.0, 40.0));
/// // This is equivalent too, but the above examples are easier to type
/// use turtle::Point;
/// turtle.go_to(Point {x: 100.0, y: 40.0});
/// ```
///
/// Each of these different styles works because the methods call
/// [`.into()`](https://doc.rust-lang.org/std/convert/trait.Into.html) internally.
///
/// ```rust
/// # use turtle::Point;
/// assert_eq!(Point {x: 100.0, y: 40.0}, [100.0, 40.0].into());
/// assert_eq!(Point {x: 100.0, y: 40.0}, (100.0, 40.0).into());
/// ```
///
/// Notice that we need to convert the right side using `into()` before it can be compared
/// in `assert_eq!()`.
///
/// ```rust,compile_fail,E0308
/// # use turtle::Point;
/// // This will not compile
/// assert_eq!(Point {x: 100.0, y: 40.0}, [100.0, 40.0]);
/// assert_eq!(Point {x: 100.0, y: 40.0}, (100.0, 40.0));
/// ```
///
/// # Manipulating Points
///
/// You can add or subtract points and multiply or divide points by scalar (f64) values. There
/// are a variety of [method functions](struct.Point.html#methods) described in the
/// documentation below that provide even more operations.
///
/// ```rust
/// # use turtle::Point;
/// # let a = 320.0; let b = 400.0; let c = 70.0; let d = 95.0;
/// // Let's say you have two points with f64 values a, b, c, and d
/// let pt = Point {x: a, y: b};
/// let pt2 = Point {x: c, y: d};
/// assert_eq!(pt + pt2, Point {x: a + c, y: b + d});
/// assert_eq!(pt - pt2, Point {x: a - c, y: b - d});
/// assert_eq!(pt * 2.0, Point {x: a * 2.0, y: b * 2.0});
/// assert_eq!(pt2 / 5.0, Point {x: c / 5.0, y: d / 5.0});
/// assert_eq!(pt2 * 2.0 - pt, Point {x: c * 2.0 - a, y: d * 2.0 - b});
/// ```
///
/// # Accessing Point Components
///
/// `Point` supports either using the `x` and `y` fields to access its components or using
/// indexing if you prefer that style.
///
/// ```rust
/// # use turtle::Point;
/// let p = Point {x: 100.0, y: 120.0};
///
/// // Get x coordinate
/// let x = p.x;
/// assert_eq!(x, 100.0);
/// assert_eq!(p[0], x);
///
/// // Get y coordinate
/// let y = p.y;
/// assert_eq!(y, 120.0);
/// assert_eq!(p[1], y);
///
/// // With pattern matching
/// let Point {x, y} = p;
/// assert_eq!(x, 100.0);
/// assert_eq!(y, 120.0);
///
/// // Modifying x and y
/// let mut pt: Point = [240.0, 430.0].into();
/// # assert_eq!(pt.x, 240.0);
/// # assert_eq!(pt.y, 430.0);
/// pt.x = 73.0;
/// pt.y = 89.0;
/// assert_eq!(pt.x, 73.0);
/// assert_eq!(pt.y, 89.0);
/// // Using indexing
/// let mut pt2: Point = [100.0, 200.0].into();
/// # assert_eq!(pt2.x, 100.0);
/// # assert_eq!(pt2.y, 200.0);
/// pt2[0] = pt.x;
/// pt2[1] = pt.y;
/// assert_eq!(pt2.x, 73.0);
/// assert_eq!(pt2.y, 89.0);
/// ```
///
/// # Generating Random Points
///
/// ```rust
/// # use turtle::{Point, random};
/// let pt: Point = random();
/// assert!(pt.x >= 0.0 && pt.x < 1.0);
/// assert!(pt.y >= 0.0 && pt.y < 1.0);
/// ```
///
/// See the documentation for the [`rand`](rand/index.html) module and the section
/// [Generating Random Values in a Range](rand/index.html#generating-random-values-in-a-range)
/// for more information.
///
/// [`Turtle::go_to()`]: struct.Turtle.html#method.go_to
/// [`Turtle::turn_towards()`]: struct.Turtle.html#method.turn_towards
/// [`Drawing::set_center()`]: struct.Drawing.html#method.set_center
#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
pub struct Point {
    /// The x-coordinate of the Point
    pub x: f64,
    /// The y-coordinate of the Point
    pub y: f64,
}

impl Point {
    /// Returns a Point that represents the origin of the coordinate system.
    ///
    /// For our "cartesian" coordinate system, this is always (0.0, 0.0)
    pub fn origin() -> Self {
        Self { x: 0.0, y: 0.0 }
    }

    /// Returns true if both x and y are finite (neither infinite nor `NaN`).
    pub fn is_finite(self) -> bool {
        self.x.is_finite() && self.y.is_finite()
    }

    /// Returns true if both x and y are neither zero, infinite,
    /// [subnormal](https://en.wikipedia.org/wiki/Denormal_number), or `NaN`.
    pub fn is_normal(self) -> bool {
        self.x.is_normal() && self.y.is_normal()
    }

    /// Returns true if both x and y are either zero, infinite,
    /// [subnormal](https://en.wikipedia.org/wiki/Denormal_number), or `NaN`.
    pub fn is_not_normal(self) -> bool {
        !self.x.is_normal() && !self.y.is_normal()
    }

    /// Computes the absolute value of x and y and returns a new `Point`
    pub fn abs(self) -> Self {
        Self {
            x: self.x.abs(),
            y: self.y.abs(),
        }
    }

    /// Returns a new `Point` with x and y set to the nearest integer to each of their values.
    /// Rounds half-way cases away from 0.0.
    pub fn round(self) -> Self {
        Self {
            x: self.x.round(),
            y: self.y.round(),
        }
    }

    /// Returns the minimum x and y coordinates of the two points
    ///
    /// ```rust
    /// # use turtle::Point;
    /// let p1 = Point {x: 100.0, y: 203.18};
    /// let p2 = Point {x: 3.0, y: 1029.677};
    /// assert_eq!(p1.min(p2), Point {x: 3.0, y: 203.18});
    /// ```
    pub fn min(self, other: Self) -> Self {
        Self {
            x: self.x.min(other.x),
            y: self.y.min(other.y),
        }
    }

    /// Returns the maximum x and y coordinates of the two points
    ///
    /// ```rust
    /// # use turtle::Point;
    /// let p1 = Point {x: 100.0, y: 203.18};
    /// let p2 = Point {x: 3.0, y: 1029.677};
    /// assert_eq!(p1.max(p2), Point {x: 100.0, y: 1029.677});
    /// ```
    pub fn max(self, other: Self) -> Self {
        Self {
            x: self.x.max(other.x),
            y: self.y.max(other.y),
        }
    }

    /// Returns the square of the length of this point.
    ///
    /// The length of a point is defined as `sqrt(x^2 + y^2)`
    pub fn square_len(self) -> f64 {
        self.x.powi(2) + self.y.powi(2)
    }

    /// Returns the length of this point.
    ///
    /// The length of a point is defined as `sqrt(x^2 + y^2)`
    pub fn len(self) -> f64 {
        self.square_len().sqrt()
    }

    /// Computes the four quadrant arctangent of `self.y` and `self.x`.
    pub fn atan2(self) -> f64 {
        self.y.atan2(self.x)
    }
}

impl From<(f64, f64)> for Point {
    fn from(pt: (f64, f64)) -> Self {
        Self { x: pt.0, y: pt.1 }
    }
}

impl From<[f64; 2]> for Point {
    fn from(pt: [f64; 2]) -> Self {
        Self { x: pt[0], y: pt[1] }
    }
}

impl From<Point> for [f64; 2] {
    fn from(pt: Point) -> Self {
        [pt.x, pt.y]
    }
}

impl Add for Point {
    type Output = Self;

    fn add(self, other: Self) -> Self::Output {
        Self {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

impl Sub for Point {
    type Output = Self;

    fn sub(self, other: Self) -> Self::Output {
        Self {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

impl Mul<f64> for Point {
    type Output = Self;

    fn mul(self, other: f64) -> Self::Output {
        Self {
            x: self.x * other,
            y: self.y * other,
        }
    }
}

impl Div<f64> for Point {
    type Output = Self;

    fn div(self, other: f64) -> Self::Output {
        Self {
            x: self.x / other,
            y: self.y / other,
        }
    }
}

impl Index<usize> for Point {
    type Output = f64;

    fn index(&self, index: usize) -> &Self::Output {
        match index {
            0 => &self.x,
            1 => &self.y,
            _ => panic!("Invalid coordinate for Point: {}", index),
        }
    }
}

impl IndexMut<usize> for Point {
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        match index {
            0 => &mut self.x,
            1 => &mut self.y,
            _ => panic!("Invalid coordinate for Point: {}", index),
        }
    }
}

impl Spatial for Point {
    type Scalar = f64;

    #[inline(always)]
    fn add(&self, other: &Self) -> Self {
        *self + *other
    }

    #[inline(always)]
    fn sub(&self, other: &Self) -> Self {
        *self - *other
    }

    #[inline(always)]
    fn scale(&self, scalar: &Self::Scalar) -> Self {
        *self * *scalar
    }
}

impl Distribution<Point> for Standard {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Point {
        Point {
            x: rng.gen(),
            y: rng.gen(),
        }
    }
}

impl RandomRange for Point {
    fn random_range<R: Rng>(rng: &mut R, p1: Self, p2: Self) -> Self {
        let min = p1.min(p2);
        let max = p1.max(p2);

        Point {
            x: RandomRange::random_range(rng, min.x, max.x),
            y: RandomRange::random_range(rng, min.y, max.y),
        }
    }
}