1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
//! Find generator chains and keyboard layouts.

use std::{
    fmt::{self, Display},
    iter,
};

use crate::{
    math,
    pergen::{Accidentals, AccidentalsFormat, AccidentalsOrder, NoteFormatter, PerGen},
    pitch::Ratio,
    temperament::Val,
};

/// A type that encapsulates the rules for generating and laying out a scale with a specified step size.
#[derive(Clone, Debug)]
pub struct EqualTemperament {
    prototype: PrototypeTemperament,
    alt_tritave: bool,
    pergen: PerGen,
    num_primary_steps: u16,
    num_secondary_steps: u16,
    primary_step: u16,
    secondary_step: u16,
    acc_format: AccidentalsFormat,
    formatter: NoteFormatter,
}

impl EqualTemperament {
    pub fn find() -> TemperamentFinder {
        TemperamentFinder {
            preferred_types: vec![
                PrototypeTemperament::Meantone7,
                PrototypeTemperament::Mavila9,
                PrototypeTemperament::Porcupine7,
                PrototypeTemperament::Porcupine8,
            ],
        }
    }

    pub fn prototype(&self) -> PrototypeTemperament {
        self.prototype
    }

    pub fn alt_tritave(&self) -> bool {
        self.alt_tritave
    }

    pub fn wart(&self) -> &'static str {
        if self.alt_tritave {
            "b"
        } else {
            ""
        }
    }

    pub fn pergen(&self) -> &PerGen {
        &self.pergen
    }

    pub fn num_primary_steps(&self) -> u16 {
        self.num_primary_steps
    }

    pub fn num_secondary_steps(&self) -> u16 {
        self.num_secondary_steps
    }

    pub fn primary_step(&self) -> u16 {
        self.primary_step
    }

    pub fn secondary_step(&self) -> u16 {
        self.secondary_step
    }

    pub fn sharpness(&self) -> i32 {
        i32::from(self.primary_step) - i32::from(self.secondary_step)
    }

    /// Obtains the note name for the given degree of the current temperament.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tune::layout::EqualTemperament;
    /// let positive_sharpness = EqualTemperament::find().by_edo(31).into_iter().next().unwrap();
    ///
    /// assert_eq!(positive_sharpness.get_note_name(0), "D");
    /// assert_eq!(positive_sharpness.get_note_name(1), "Ebb");
    /// assert_eq!(positive_sharpness.get_note_name(18), "A");
    /// assert_eq!(positive_sharpness.get_note_name(25), "B#");
    ///
    /// let negative_sharpness = EqualTemperament::find().by_edo(16).into_iter().skip(1).next().unwrap();
    ///
    /// assert_eq!(negative_sharpness.get_note_name(0), "D");
    /// assert_eq!(negative_sharpness.get_note_name(1), "D+/E-");
    /// assert_eq!(negative_sharpness.get_note_name(9), "A");
    /// assert_eq!(negative_sharpness.get_note_name(12), "B+");
    /// ```
    pub fn get_note_name(&self, index: u16) -> String {
        self.formatter.format(&self.get_accidentals(index))
    }

    pub fn get_accidentals(&self, index: u16) -> Accidentals {
        self.pergen.get_accidentals(&self.acc_format, index)
    }

    pub fn get_keyboard(&self) -> IsomorphicKeyboard {
        IsomorphicKeyboard {
            primary_step: self.primary_step,
            secondary_step: self.secondary_step,
        }
        .coprime()
    }

    /// Generate an automatic color schema for the given temperament.
    ///
    /// The resulting color schema is arranged in layers, with the innermost layer representing the natural notes and the outermost layer representing the most enharmonic notes, if any.
    ///
    /// The intermediate layers as well as the enharmonic layer contain the notes between the natural ones and use the same shape as the primary and secondary sub-scale or the full natural scale.
    ///
    /// The total number of layers depends on the larger of the primary and secondary step sizes of the given temperament.
    ///
    /// # Return Value
    ///
    /// The color schema is returned as a `Vec` of abstract indexes that the method caller can use to look up the final color.
    /// The color indexes are returned in genchain order.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tune::layout::EqualTemperament;
    /// // Color layers of 31-EDO: 7 (n) + 7 (#) + 7 (b) + 5 (##) + 5 (bb)
    /// assert_eq!(
    ///     EqualTemperament::find().by_edo(31).into_iter().next().unwrap().get_colors(),
    ///     &[
    ///         0, 0, 0, 0,          // Neutral layer (D, A, E, B)
    ///         1, 1, 1, 1, 1, 1, 1, // Sharp layer
    ///         3, 3, 3, 3, 3,       // Double-sharp layer
    ///         4, 4, 4, 4, 4,       // Double-flat layer
    ///         2, 2, 2, 2, 2, 2, 2, // Flat layer
    ///         0, 0, 0,             // Neutral layer (F, C, G)
    ///     ]
    /// );
    ///
    /// // Color layers of 19-EDO: 7 (n) + 5 (#) + 5 (b) + 2 (enharmonic)
    /// assert_eq!(
    ///     EqualTemperament::find().by_edo(19).into_iter().next().unwrap().get_colors(),
    ///     &[
    ///         0, 0, 0, 0,    // Neutral layer (D, A, E, B)
    ///         1, 1, 1, 1, 1, // Sharp layer
    ///         3, 3,          // Enharmonic layer
    ///         2, 2, 2, 2, 2, // Flat layer
    ///         0, 0, 0,       // Neutral layer (F, C, G)
    ///     ]
    /// );
    ///
    /// // Color layers of 24-EDO: 7 (n) + 5 (enharmonic), cycles removed
    /// assert_eq!(
    ///     EqualTemperament::find().by_edo(24).into_iter().next().unwrap().get_colors(),
    ///     &[
    ///         0, 0, 0, 0,    // Neutral layer (D, A, E, B)
    ///         1, 1, 1, 1, 1, // Enharmonic layer
    ///         0, 0, 0,       // Neutral layer (F, C, G)
    ///     ]
    /// );
    ///
    /// // Color layers of 7-EDO: 7 (n)
    /// assert_eq!(
    ///     EqualTemperament::find().by_edo(7).into_iter().next().unwrap().get_colors(),
    ///     &[
    ///         1, 0, 0, 0, 0, 0, 0, // Neutral layer (A visual cue is added to D)
    ///     ]
    /// );
    /// ```
    pub fn get_colors(&self) -> Vec<usize> {
        let num_natural_primary_layers = u16::from(self.primary_step() > 0);
        let num_natural_secondary_layers = u16::from(self.secondary_step() > 0);

        let num_non_natural_primary_layers =
            self.primary_step() / self.pergen().num_cycles() - num_natural_primary_layers;
        let num_non_natural_secondary_layers =
            self.secondary_step() / self.pergen().num_cycles() - num_natural_secondary_layers;

        let num_intermediate_primary_layers = num_non_natural_primary_layers / 2;
        let num_intermediate_secondary_layers = num_non_natural_secondary_layers / 2;

        let num_enharmonic_primary_layers = num_non_natural_primary_layers % 2;
        let num_enharmonic_secondary_layers = num_non_natural_secondary_layers % 2;

        let size_of_neutral_layer = num_natural_primary_layers * self.num_primary_steps
            + num_natural_secondary_layers * self.num_secondary_steps;

        let size_of_enharmonic_layer = num_enharmonic_primary_layers * self.num_primary_steps
            + num_enharmonic_secondary_layers * self.num_secondary_steps;

        let mut sizes_of_intermediate_layers = Vec::new();
        sizes_of_intermediate_layers.extend(repeat(
            num_intermediate_primary_layers.min(num_intermediate_secondary_layers),
            self.num_primary_steps + self.num_secondary_steps,
        ));
        sizes_of_intermediate_layers.extend(repeat(
            num_intermediate_primary_layers.saturating_sub(num_intermediate_secondary_layers),
            self.num_primary_steps,
        ));
        sizes_of_intermediate_layers.extend(repeat(
            num_intermediate_secondary_layers.saturating_sub(num_intermediate_primary_layers),
            self.num_secondary_steps,
        ));

        let mut colors = Vec::new();
        colors.extend(repeat(size_of_neutral_layer, 0));
        for (layer_index, &layer_size) in sizes_of_intermediate_layers.iter().enumerate() {
            colors.extend(repeat(layer_size, 2 * layer_index + 1));
        }
        colors.extend(repeat(
            size_of_enharmonic_layer,
            sizes_of_intermediate_layers.len() * 2 + 1,
        ));
        for (layer_index, &layer_size) in sizes_of_intermediate_layers.iter().enumerate().rev() {
            colors.extend(repeat(layer_size, 2 * layer_index + 2))
        }

        let offset = usize::from(self.acc_format.genchain_origin) % colors.len();
        colors.rotate_left(offset);

        if self.pergen().period() / self.pergen().num_cycles() <= self.acc_format.num_symbols {
            colors[0] = 1;
        }

        colors
    }
}

fn repeat<T: Clone>(count: u16, item: T) -> impl Iterator<Item = T> {
    iter::repeat(item).take(usize::from(count))
}

/// Finds an appropriate [`EqualTemperament`] based on the list of [`PrototypeTemperament`]s provided.
pub struct TemperamentFinder {
    preferred_types: Vec<PrototypeTemperament>,
}

impl TemperamentFinder {
    pub fn with_preference(mut self, preferred_prototypes: Vec<PrototypeTemperament>) -> Self {
        self.preferred_types = preferred_prototypes;
        self
    }

    pub fn by_edo(&self, num_steps_per_octave: impl Into<f64>) -> Vec<EqualTemperament> {
        self.by_step_size(Ratio::octave().divided_into_equal_steps(num_steps_per_octave))
    }

    pub fn by_step_size(&self, step_size: Ratio) -> Vec<EqualTemperament> {
        let mut val = Val::patent(step_size, 5);

        let mut temperaments = Vec::new();

        for temperament_type in &self.preferred_types {
            temperaments.extend(temperament_type.create_temperament(&val, false));
        }

        if temperaments.is_empty() && val.pick_alternative(1) {
            for temperament_type in &self.preferred_types {
                temperaments.extend(temperament_type.create_temperament(&val, true));
            }
        }

        temperaments.sort_by(|t1, t2| {
            t1.sharpness()
                .is_negative()
                .cmp(&t2.sharpness().is_negative())
        });

        temperaments
    }
}

/// The temperament providing the generation schema and layout rules for a given scale as a prototype.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub enum PrototypeTemperament {
    /// Octave-reduced temperament treating 4 fifths to be equal to one major third.
    ///
    /// The major third can be divided into two equal parts which form the *primary steps* of the scale.
    ///
    /// The note names are derived from the genchain of fifths (3/2) [ &hellip; Bb F C G D A E B F# &hellip; ].
    /// This results in standard music notation with G at one fifth above C and D at two fifths == 1/2 major third == 1 primary step above C.
    ///
    /// This prototype template also applies to other chain-of-fifth-based temperaments like Mavila and Superpyth.
    Meantone7,

    /// Similar to [`PrototypeTemperament::Meantone7`] but with 9 natural notes instead of 7.
    ///
    /// Due to the added notes, the usual relationships between interval names and just ratios no longer apply.
    /// For instance, a Mavila[9] major third will sound similar to a Meantone[7] minor third and a Mavila[9] minor fourth will sound similar to a Meantone[7] major third.
    ///
    /// The generator (perfect sixth) needs to be a rather flat version of 3/2 in order to make this prototype work.
    /// The genchain order is [ &hellip; Fb, B, G, C, H, D, J, E, A, F, B# ].
    Mavila9,

    /// Octave-reduced temperament treating 3 "major" thirds to be equal to two major fourths.
    ///
    /// This temperament is best described in terms of *primary steps*, three of which form a major fourth.
    /// A primary step, usually being smaller than a secondary step, can be formally considered a minor second but in terms of just ratios may be closer to a major second.
    ///
    /// The note names are derived from the genchain of primary steps [ &hellip; Gb A B C D E F G A# &hellip; ].
    /// In contrast to meantone, the intervals E-F and F-G have the same size of one primary step while G-A is different, usually larger.
    Porcupine7,

    /// Similar to [`PrototypeTemperament::Porcupine7`] but with 8 natural notes instead of 7.
    ///
    /// Adding an additional note makes the primary step larger than the secondary step, resolving the issue of major intervals being smaller than minor intervals.
    ///
    /// The genchain order is [ &hellip; Hb A B C D E F G H A# &hellip; ].
    Porcupine8,
}

impl PrototypeTemperament {
    fn create_temperament(self, val: &Val, alt_tritave: bool) -> Option<EqualTemperament> {
        let pergen = self.get_pergen(val)?;
        let spec = self.get_spec();

        let primary_step = math::i32_rem_u(
            i32::from(spec.num_secondary_steps) * i32::from(pergen.generator()),
            pergen.period(),
        );
        let secondary_step = math::i32_rem_u(
            -i32::from(spec.num_primary_steps) * i32::from(pergen.generator()),
            pergen.period(),
        );

        if i32::from(spec.num_primary_steps) * i32::from(primary_step)
            + i32::from(spec.num_secondary_steps) * i32::from(secondary_step)
            != i32::from(pergen.period())
        {
            return None;
        }

        let (sharp_sign, flat_sign, order) = if primary_step >= secondary_step {
            ('#', 'b', AccidentalsOrder::SharpFlat)
        } else {
            ('-', '+', AccidentalsOrder::FlatSharp)
        };

        Some(EqualTemperament {
            prototype: self,
            alt_tritave,
            pergen,
            num_primary_steps: spec.num_primary_steps,
            num_secondary_steps: spec.num_secondary_steps,
            primary_step,
            secondary_step,
            acc_format: AccidentalsFormat {
                num_symbols: spec.num_primary_steps + spec.num_secondary_steps,
                genchain_origin: spec.genchain_origin,
            },
            formatter: NoteFormatter {
                note_names: spec.genchain.into(),
                sharp_sign,
                flat_sign,
                order,
            },
        })
    }

    fn get_pergen(&self, val: &Val) -> Option<PerGen> {
        let values = val.values();
        let octave = values[0];
        let tritave = values[1];

        Some(match self {
            PrototypeTemperament::Meantone7 | PrototypeTemperament::Mavila9 => {
                let fifth = tritave.checked_sub(octave)?;
                PerGen::new(octave, fifth)
            }
            PrototypeTemperament::Porcupine7 | PrototypeTemperament::Porcupine8 => {
                let third_fourth = exact_div(octave.checked_mul(2)?.checked_sub(tritave)?, 3)?;
                PerGen::new(octave, third_fourth)
            }
        })
    }

    fn get_spec(self) -> TemperamentSpec {
        match self {
            PrototypeTemperament::Meantone7 => TemperamentSpec {
                num_primary_steps: 5,
                num_secondary_steps: 2,
                genchain: &['F', 'C', 'G', 'D', 'A', 'E', 'B'],
                genchain_origin: 3,
            },
            PrototypeTemperament::Mavila9 => TemperamentSpec {
                num_primary_steps: 7,
                num_secondary_steps: 2,
                genchain: &['B', 'G', 'C', 'H', 'D', 'J', 'E', 'A', 'F'],
                genchain_origin: 4,
            },
            PrototypeTemperament::Porcupine7 => TemperamentSpec {
                num_primary_steps: 6,
                num_secondary_steps: 1,
                genchain: &['A', 'B', 'C', 'D', 'E', 'F', 'G'],
                genchain_origin: 3,
            },
            PrototypeTemperament::Porcupine8 => TemperamentSpec {
                num_primary_steps: 7,
                num_secondary_steps: 1,
                genchain: &['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'],
                genchain_origin: 3,
            },
        }
    }
}

fn exact_div(numer: u16, denom: u16) -> Option<u16> {
    (numer % denom == 0).then_some(numer / denom)
}

impl Display for PrototypeTemperament {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let display_name = match self {
            PrototypeTemperament::Meantone7 => "Meantone[7]",
            PrototypeTemperament::Mavila9 => "Mavila[9]",
            PrototypeTemperament::Porcupine7 => "Porcupine[7]",
            PrototypeTemperament::Porcupine8 => "Porcupine[8]",
        };
        write!(f, "{display_name}")
    }
}

struct TemperamentSpec {
    num_primary_steps: u16,
    num_secondary_steps: u16,
    genchain: &'static [char],
    genchain_origin: u16,
}

/// A straightforward data structure for retrieving scale degrees on an isomorphic keyboard.
#[derive(Debug, Clone)]
pub struct IsomorphicKeyboard {
    /// The primary step width of the isometric keyboard.
    pub primary_step: u16,

    /// The secondary step width of the isometric keyboard.
    pub secondary_step: u16,
}

impl IsomorphicKeyboard {
    /// Make the keyboard coprime s.t. all scale degrees are reachable.
    ///
    /// This addresses the scenario where not all key degrees can be reached when the step sizes are not coprime.
    /// For instance, when `primary_step == 4` and `secondary_step == 2`, degrees with odd numbers cannot be obtained.
    ///
    /// This function solves the issue by adjusting `secondary_step` to divide the step width along the sharp axis into smaller segments.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tune::layout::IsomorphicKeyboard;
    /// let already_coprime = IsomorphicKeyboard {
    ///     primary_step: 3,
    ///     secondary_step: 2,
    /// }.coprime();
    ///
    /// // Already coprime => Do nothing
    /// assert_eq!(already_coprime.primary_step, 3);
    /// assert_eq!(already_coprime.secondary_step, 2);
    ///
    /// let positive_sharp_value = IsomorphicKeyboard {
    ///     primary_step: 4,
    ///     secondary_step: 2,
    /// }.coprime();
    ///
    /// // Sharp value is 4-2=2 before and 4-3=1 afterwards
    /// assert_eq!(positive_sharp_value.primary_step, 4);
    /// assert_eq!(positive_sharp_value.secondary_step, 3);
    ///
    /// let negative_sharp_value = IsomorphicKeyboard {
    ///     primary_step: 2,
    ///     secondary_step: 4,
    /// }.coprime();
    ///
    /// // Sharp value is 2-4=-2 before and 2-3=-1 afterwards
    /// assert_eq!(negative_sharp_value.primary_step, 2);
    /// assert_eq!(negative_sharp_value.secondary_step, 3);
    ///
    /// let zero_sharp_value = IsomorphicKeyboard {
    ///     primary_step: 2,
    ///     secondary_step: 2,
    /// }.coprime();
    ///
    /// // Special case: Sharp value is 2-2=0 before and 2-1=1 afterwards
    /// assert_eq!(zero_sharp_value.primary_step, 2);
    /// assert_eq!(zero_sharp_value.secondary_step, 1);
    ///
    /// let large_sharp_value = IsomorphicKeyboard {
    ///     primary_step: 6,
    ///     secondary_step: 2,
    /// }.coprime();
    ///
    /// // Special case: Sharp value is 6-2=4 before and 6-5=1 afterwards
    /// assert_eq!(large_sharp_value.primary_step, 6);
    /// assert_eq!(large_sharp_value.secondary_step, 5);
    /// ```
    pub fn coprime(mut self) -> IsomorphicKeyboard {
        // Special case: Set sharp value to 1 if it is currently 0
        if self.primary_step == self.secondary_step {
            self.secondary_step = self.primary_step - 1;
            return self;
        }

        loop {
            let gcd = math::gcd_u16(self.secondary_step, self.primary_step);

            if gcd == 1 {
                return self;
            }

            let current_sharp_value = self.primary_step.abs_diff(self.secondary_step);
            let wanted_sharp_value = current_sharp_value / gcd;
            let sharp_delta = current_sharp_value - wanted_sharp_value;

            if self.primary_step > self.secondary_step {
                self.secondary_step += sharp_delta;
            } else {
                self.secondary_step -= sharp_delta;
            }
        }
    }

    /// Get the scale degree of the key at location `(x, y)`.
    ///
    /// ```
    /// # use tune::layout::IsomorphicKeyboard;
    /// let keyboard = IsomorphicKeyboard {
    ///     primary_step: 5,
    ///     secondary_step: 3,
    /// };
    ///
    /// assert_eq!(keyboard.get_key(-2, -2), -16);
    /// assert_eq!(keyboard.get_key(-2, -1), -13);
    /// assert_eq!(keyboard.get_key(-2, 0), -10);
    /// assert_eq!(keyboard.get_key(-1, 0), -5);
    /// assert_eq!(keyboard.get_key(0, 0), 0);
    /// assert_eq!(keyboard.get_key(0, 1), 3);
    /// assert_eq!(keyboard.get_key(0, 2), 6);
    /// assert_eq!(keyboard.get_key(1, 2), 11);
    /// assert_eq!(keyboard.get_key(2, 2), 16);
    /// ```
    pub fn get_key(&self, num_primary_steps: i16, num_secondary_steps: i16) -> i32 {
        i32::from(num_primary_steps) * i32::from(self.primary_step)
            + i32::from(num_secondary_steps) * i32::from(self.secondary_step)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::fmt::Write;

    #[test]
    fn edo_notes_1_to_99() {
        let mut output = String::new();

        for num_steps_per_octave in 1u16..100 {
            print_notes(&mut output, num_steps_per_octave).unwrap();
        }

        std::fs::write("edo-notes-1-to-99.txt", &output).unwrap();
        assert_eq!(output, include_str!("../edo-notes-1-to-99.txt"));
    }

    fn print_notes(output: &mut String, num_steps_per_octave: u16) -> Result<(), fmt::Error> {
        for temperament in EqualTemperament::find().by_edo(num_steps_per_octave) {
            print_edo_headline(output, num_steps_per_octave, &temperament)?;

            for index in 0..num_steps_per_octave {
                writeln!(output, "{} - {}", index, temperament.get_note_name(index))?;
            }
        }

        Ok(())
    }

    #[test]
    fn edo_keyboards_1_to_99() {
        let mut output = String::new();

        for num_steps_per_octave in 1..100 {
            print_keyboards(&mut output, num_steps_per_octave).unwrap();
        }

        std::fs::write("edo-keyboards-1-to-99.txt", &output).unwrap();
        assert_eq!(output, include_str!("../edo-keyboards-1-to-99.txt"));
    }

    fn print_keyboards(output: &mut String, num_steps_per_octave: u16) -> Result<(), fmt::Error> {
        for temperament in EqualTemperament::find().by_edo(num_steps_per_octave) {
            print_edo_headline(output, num_steps_per_octave, &temperament)?;

            let keyboard = temperament.get_keyboard();

            for y in -5i16..=5 {
                for x in 0..10 {
                    write!(
                        output,
                        "{:>4}",
                        keyboard
                            .get_key(x, y)
                            .rem_euclid(i32::from(num_steps_per_octave)),
                    )?;
                }
                writeln!(output)?;
            }
        }

        Ok(())
    }

    #[test]
    fn edo_colors_1_to_99() {
        let mut output = String::new();

        for num_steps_per_octave in 1..100 {
            print_colors(&mut output, num_steps_per_octave).unwrap();
        }

        std::fs::write("edo-colors-1-to-99.txt", &output).unwrap();
        assert_eq!(output, include_str!("../edo-colors-1-to-99.txt"));
    }

    fn print_colors(output: &mut String, num_steps_per_octave: u16) -> Result<(), fmt::Error> {
        for temperament in EqualTemperament::find().by_edo(num_steps_per_octave) {
            print_edo_headline(output, num_steps_per_octave, &temperament)?;

            let colors = temperament.get_colors();
            let keyboard = temperament.get_keyboard();

            for y in -5i16..=5 {
                for x in 0..10 {
                    write!(
                        output,
                        "{:>4}",
                        colors[usize::from(
                            temperament
                                .pergen()
                                .get_generation(math::i32_rem_u(
                                    keyboard.get_key(x, y),
                                    num_steps_per_octave
                                ))
                                .degree
                        )],
                    )?;
                }
                writeln!(output)?;
            }
        }

        Ok(())
    }

    fn print_edo_headline(
        output: &mut String,
        num_steps_per_octave: u16,
        temperament: &EqualTemperament,
    ) -> Result<(), fmt::Error> {
        writeln!(
            output,
            "---- {}{}-EDO ({}) ----",
            num_steps_per_octave,
            temperament.wart(),
            temperament.prototype()
        )?;

        writeln!(
            output,
            "primary_step={}, secondary_step={}, sharpness={}, num_cycles={}",
            temperament.primary_step(),
            temperament.secondary_step(),
            temperament.sharpness(),
            temperament.pergen().num_cycles(),
        )
    }
}