1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//! Specialized integer operations missing from the standard library.

use std::convert::{TryFrom, TryInto};

/// Marks unsigned integer types that can be safely used in 32-bit integer divisions.
pub trait U32Denom: Copy + Into<i64> + TryFrom<i64> {}

impl U32Denom for u8 {}
impl U32Denom for u16 {}
impl U32Denom for u32 {}

/// Returns the euclidean division of a signed `numer` and an unsigned `denom`.
///
/// The result is a signed integer between `-numer` and `numer`.
/// The function returns valid results for every `(numer, denom)` pair where `denom != 0`.
///
/// # Panics
///
/// Panics if `denom == 0`.
///
/// # Examples
///
/// ```
/// # use std::i32;
/// # use std::u32;
/// # use tune::math;
/// assert_eq!(math::i32_div_u(0, 5u32), 0);
/// assert_eq!(math::i32_div_u(1, 5u32), 0);
/// assert_eq!(math::i32_div_u(4, 5u32), 0);
/// assert_eq!(math::i32_div_u(5, 5u32), 1);
/// assert_eq!(math::i32_div_u(6, 5u32), 1);
///
/// // When numer is negative
/// assert_eq!(math::i32_div_u(-1, 5u32), -1);
/// assert_eq!(math::i32_div_u(-4, 5u32), -1);
/// assert_eq!(math::i32_div_u(-5, 5u32), -1);
/// assert_eq!(math::i32_div_u(-6, 5u32), -2);
///
/// // Integer limits
/// assert_eq!(math::i32_div_u(i32::MIN, u32::MAX), -1);
/// assert_eq!(math::i32_div_u(-1, u32::MAX), -1);
/// assert_eq!(math::i32_div_u(1, u32::MAX), 0);
/// assert_eq!(math::i32_div_u(i32::MAX, u32::MAX), 0);
/// ```
pub fn i32_div_u<D: U32Denom>(numer: i32, denom: D) -> i32 {
    i64::from(numer)
        .div_euclid(denom.into())
        .try_into()
        .unwrap()
}

/// Returns the euclidean remainder of a signed `numer` and an unsigned `denom`.
///
/// The result is an unsigned integer between `0` and `denom-1`.
/// The function returns valid results for every `(numer, denom)` pair where `denom != 0`.
///
/// # Panics
///
/// Panics if `denom == 0`.
///
/// # Examples
///
/// ```
/// # use std::i32;
/// # use std::u32;
/// # use tune::math;
/// assert_eq!(math::i32_rem_u(0, 5u32), 0);
/// assert_eq!(math::i32_rem_u(1, 5u32), 1);
/// assert_eq!(math::i32_rem_u(4, 5u32), 4);
/// assert_eq!(math::i32_rem_u(5, 5u32), 0);
/// assert_eq!(math::i32_rem_u(6, 5u32), 1);
///
/// // When numer is negative
/// assert_eq!(math::i32_rem_u(-1, 5u32), 4);
/// assert_eq!(math::i32_rem_u(-4, 5u32), 1);
/// assert_eq!(math::i32_rem_u(-5, 5u32), 0);
/// assert_eq!(math::i32_rem_u(-6, 5u32), 4);
///
/// // Integer limits
/// assert_eq!(math::i32_rem_u(i32::MIN, u32::MAX), i32::MAX as u32);
/// assert_eq!(math::i32_rem_u(-1, u32::MAX), u32::MAX - 1);
/// assert_eq!(math::i32_rem_u(1, u32::MAX), 1);
/// assert_eq!(math::i32_rem_u(i32::MAX, u32::MAX), i32::MAX as u32);
/// ```
pub fn i32_rem_u<D: U32Denom>(numer: i32, denom: D) -> D {
    i64::from(numer)
        .rem_euclid(denom.into())
        .try_into()
        .ok()
        .unwrap()
}

/// Evaluates [`i32_div_u`] and [`i32_rem_u`] in one call.
pub fn i32_dr_u<D: U32Denom>(numer: i32, denom: D) -> (i32, D) {
    (i32_div_u(numer, denom), i32_rem_u(numer, denom))
}

/// Simplifies a fraction of `u16`s.
///
/// # Examples
///
/// ```
/// # use tune::math;
/// // With simplification
/// assert_eq!(math::simplify_u16(35, 20), (7, 4));
/// assert_eq!(math::simplify_u16(35, 21), (5, 3));
///
/// // Simplification is idempotent
/// assert_eq!(math::simplify_u16(7, 4), (7, 4));
/// assert_eq!(math::simplify_u16(5, 3), (5, 3));
///
/// // Degenerate cases
/// assert_eq!(math::simplify_u16(0, 0), (0, 0));
/// assert_eq!(math::simplify_u16(35, 0), (1, 0));
/// assert_eq!(math::simplify_u16(0, 21), (0, 1));
pub fn simplify_u16(mut numer: u16, mut denom: u16) -> (u16, u16) {
    let gcd = gcd_u16(numer, denom);
    if gcd != 0 {
        numer /= gcd;
        denom /= gcd;
    }
    (numer, denom)
}

/// Determines the greatest common divisor of two `u16`s.
///
/// # Examples
///
/// ```
/// # use tune::math;
/// // Regular cases
/// assert_eq!(math::gcd_u16(35, 20), 5);
/// assert_eq!(math::gcd_u16(35, 21), 7);
/// assert_eq!(math::gcd_u16(35, 22), 1);
///
/// // When one number is equal to 1
/// assert_eq!(math::gcd_u16(1, 21), 1);
/// assert_eq!(math::gcd_u16(35, 1), 1);
///
/// // When one number is equal to 0
/// assert_eq!(math::gcd_u16(35, 0), 35);
/// assert_eq!(math::gcd_u16(0, 21), 21);
/// ```
pub fn gcd_u16(mut x: u16, mut y: u16) -> u16 {
    while y != 0 {
        let t = y;
        y = x % y;
        x = t;
    }
    x
}

/// Removes all powers of two from a `u16`.
///
/// # Examples
///
/// ```
/// # use tune::math;
/// assert_eq!(math::odd_factors_u16(0), 0);
/// assert_eq!(math::odd_factors_u16(1), 1);
/// assert_eq!(math::odd_factors_u16(2), 1);
/// assert_eq!(math::odd_factors_u16(3), 3);
/// assert_eq!(math::odd_factors_u16(10), 5);
/// assert_eq!(math::odd_factors_u16(24), 3);
/// assert_eq!(math::odd_factors_u16(35), 35);
/// ```
pub fn odd_factors_u16(mut number: u16) -> u16 {
    if number != 0 {
        while number % 2 == 0 {
            number /= 2;
        }
    }
    number
}