1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
use crate::{ord_as_cmp, InvalidOrderError, OrderResult};
use core::cmp::Ordering;
#[cfg(feature = "std")]
mod std_mergesort;
mod std_quicksort;

/// Sort methods for [`PartialOrd`].
pub trait TrySort<T> {
    #[cfg(feature = "std")]
    #[inline]
    /// [`PartialOrd`] version for [`slice::sort`]
    fn try_sort(&mut self) -> OrderResult<()>
    where
        T: PartialOrd<T>,
    {
        self.try_sort_by(ord_as_cmp)
    }
    #[cfg(feature = "std")]
    /// [`PartialOrd`] version for [`slice::sort_by`]
    fn try_sort_by<F>(&mut self, compare: F) -> OrderResult<()>
    where
        F: FnMut(&T, &T) -> Option<bool>;
    #[cfg(feature = "std")]
    #[inline]
    /// [`PartialOrd`] version for [`slice::sort_by_key`]
    fn try_sort_by_key<K, F>(&mut self, f: F) -> OrderResult<()>
    where
        F: FnMut(&T) -> Option<K>,
        K: PartialOrd<K>,
    {
        let mut f2 = f;
        self.try_sort_by(|a, b| f2(a).partial_cmp(&f2(b)).map(|a| a == Ordering::Less))
    }
    #[cfg(feature = "std")]
    /// [`PartialOrd`] version for [`slice::sort_by_cached_key`]
    fn try_sort_by_cached_key<K, F>(&mut self, f: F) -> OrderResult<()>
    where
        F: FnMut(&T) -> Option<K>,
        K: PartialOrd<K>;

    #[inline]
    /// [`PartialOrd`] version for [`slice::sort_unstable`]
    fn try_sort_unstable(&mut self) -> OrderResult<()>
    where
        T: PartialOrd<T>,
    {
        self.try_sort_unstable_by(ord_as_cmp)
    }
    /// [`PartialOrd`] version for [`slice::sort_unstable_by`]
    fn try_sort_unstable_by<F>(&mut self, compare: F) -> OrderResult<()>
    where
        F: FnMut(&T, &T) -> Option<bool>;
    #[inline]
    /// [`PartialOrd`] version for [`slice::sort_unstable_by_key`]
    fn try_sort_unstable_by_key<K, F>(&mut self, f: F) -> OrderResult<()>
    where
        F: FnMut(&T) -> Option<K>,
        K: PartialOrd<K>,
    {
        let mut f2 = f;
        self.try_sort_unstable_by(|a, b| f2(a).partial_cmp(&f2(b)).map(|a| a == Ordering::Less))
    }

    #[inline]
    /// [`PartialOrd`] version for [`slice::is_sorted`]
    fn try_is_sorted(&self) -> OrderResult<bool>
    where
        T: PartialOrd<T>,
    {
        self.try_is_sorted_by(ord_as_cmp)
    }
    /// [`PartialOrd`] version for [`slice::is_sorted_by`]
    fn try_is_sorted_by<F>(&self, compare: F) -> OrderResult<bool>
    where
        F: FnMut(&T, &T) -> Option<bool>;
    #[inline]
    /// [`PartialOrd`] version for [`slice::is_sorted_by_key`]
    fn try_is_sorted_by_key<K, F>(&mut self, f: F) -> OrderResult<bool>
    where
        F: FnMut(&T) -> Option<K>,
        K: PartialOrd<K>,
    {
        let mut f2 = f;
        self.try_is_sorted_by(|a, b| f2(a).partial_cmp(&f2(b)).map(|a| a == Ordering::Less))
    }
}

impl<T> TrySort<T> for [T] {
    #[inline]
    #[cfg(feature = "std")]
    fn try_sort_by<F>(&mut self, compare: F) -> OrderResult<()>
    where
        F: FnMut(&T, &T) -> Option<bool>,
    {
        std_mergesort::merge_sort(self, compare).ok_or(InvalidOrderError)
    }

    #[inline]
    fn try_sort_unstable_by<F>(&mut self, compare: F) -> OrderResult<()>
    where
        F: FnMut(&T, &T) -> Option<bool>,
    {
        std_quicksort::quicksort(self, compare).ok_or(InvalidOrderError)
    }

    #[inline]
    fn try_is_sorted_by<F>(&self, compare: F) -> OrderResult<bool>
    where
        F: FnMut(&T, &T) -> Option<bool>,
    {
        try_is_sorted_by_slice(self, compare)
    }

    #[cfg(feature = "std")]
    #[inline]
    fn try_sort_by_cached_key<K, F>(&mut self, f: F) -> OrderResult<()>
    where
        F: FnMut(&T) -> Option<K>,
        K: PartialOrd<K>,
    {
        // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
        macro_rules! sort_by_key {
            ($t:ty, $slice:ident, $f:ident) => {{
                let mut indices: Vec<_> = $slice
                    .iter()
                    .map($f)
                    .enumerate()
                    .map(|(i, k)| (k, i as $t))
                    .collect();
                // The elements of `indices` are unique, as they are indexed, so any sort will be
                // stable with respect to the original slice. We use `sort_unstable` here because
                // it requires less memory allocation.
                indices.try_sort_unstable()?;
                for i in 0..$slice.len() {
                    let mut index = indices[i].1;
                    while (index as usize) < i {
                        index = indices[index as usize].1;
                    }
                    indices[i].1 = index;
                    $slice.swap(i, index as usize);
                }
                Ok(())
            }};
        }

        let sz_u8 = core::mem::size_of::<(K, u8)>();
        let sz_u16 = core::mem::size_of::<(K, u16)>();
        let sz_u32 = core::mem::size_of::<(K, u32)>();
        let sz_usize = core::mem::size_of::<(K, usize)>();

        let len = self.len();
        if len < 2 {
            return Ok(());
        }
        if sz_u8 < sz_u16 && len <= (u8::MAX as usize) {
            return sort_by_key!(u8, self, f);
        }
        if sz_u16 < sz_u32 && len <= (u16::MAX as usize) {
            return sort_by_key!(u16, self, f);
        }
        if sz_u32 < sz_usize && len <= (u32::MAX as usize) {
            return sort_by_key!(u32, self, f);
        }
        sort_by_key!(usize, self, f)
    }
}

/// Function to check whether slice is sorted.
pub fn try_is_sorted_by_slice<T, F>(slice: &[T], compare: F) -> OrderResult<bool>
where
    F: FnMut(&T, &T) -> Option<bool>,
{
    let mut cmp = compare;
    if slice.len() > 1 {
        unsafe {
            let mut prev = slice.get_unchecked(0);
            for i in 1..slice.len() {
                let next = slice.get_unchecked(i);
                if let Some(x) = cmp(&prev, &next) {
                    if !x {
                        return Ok(false);
                    }
                    prev = next;
                } else {
                    return Err(InvalidOrderError);
                }
            }
        }
    }
    Ok(true)
}

/// Function to check whether iter is sorted.
pub fn try_is_sorted_by<T, I, F>(mut iter: I, compare: F) -> OrderResult<bool>
where
    F: FnMut(&T, &T) -> Option<bool>,
    I: Iterator<Item = T>,
{
    let mut cmp = compare;
    if let Some(mut prev) = iter.next() {
        for next in iter {
            if let Some(x) = cmp(&prev, &next) {
                if !x {
                    return Ok(false);
                }
                prev = next;
            } else {
                return Err(InvalidOrderError);
            }
        }
    }
    Ok(true)
}

#[cfg(test)]
#[cfg(feature = "std")]
mod tests {
    use crate::sort::*;
    use rand::distributions::Standard;
    use rand::prelude::*;
    use std::vec::Vec;

    #[test]
    fn try_sort_ok() {
        let rng = thread_rng();
        let mut v: Vec<f32> = Standard.sample_iter(rng).take(100).collect();
        let res = v.try_sort();
        assert!(res.is_ok());
        assert!(v.try_is_sorted().unwrap_or(false))
    }

    #[test]
    fn try_sort_error() {
        let rng = thread_rng();
        let mut v: Vec<f32> = Standard.sample_iter(rng).take(100).collect();
        v.push(f32::NAN);
        let res = v.try_sort();
        assert!(res.is_err());
        assert!(!v.try_is_sorted().is_err())
    }
}