1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/*
 * Copyright (C) 2015 Benjamin Fry <benjaminfry@me.com>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//! All record data structures and related serialization methods

use std::fmt;

#[cfg(feature = "serde-config")]
use serde::{Deserialize, Serialize};

// TODO: these should each be it's own struct, it would make parsing and decoding a little cleaner
//  and also a little more ergonomic when accessing.
// each of these module's has the parser for that rdata embedded, to keep the file sizes down...
pub mod dnskey;
pub mod ds;
#[allow(deprecated)]
pub mod key;
pub mod nsec;
pub mod nsec3;
pub mod nsec3param;
pub mod sig;
pub mod tsig;

use enum_as_inner::EnumAsInner;
use log::trace;

use crate::error::*;
use crate::rr::rdata::null;
use crate::rr::rdata::NULL;
use crate::rr::{RData, RecordType};
use crate::serialize::binary::*;

pub use self::dnskey::DNSKEY;
pub use self::ds::DS;
pub use self::key::KEY;
pub use self::nsec::NSEC;
pub use self::nsec3::NSEC3;
pub use self::nsec3param::NSEC3PARAM;
pub use self::sig::SIG;
pub use self::tsig::TSIG;

/// The type of the resource record, for DNSSEC-specific records.
#[deprecated(note = "All RecordType definitions have been moved into RecordType")]
pub type DNSSECRecordType = RecordType;

/// Record data enum variants for DNSSEC-specific records.
#[cfg_attr(feature = "serde-config", derive(Deserialize, Serialize))]
#[derive(Debug, EnumAsInner, PartialEq, Clone, Eq)]
#[non_exhaustive]
pub enum DNSSECRData {
    /// ```text
    /// RFC 7344              Delegation Trust Maintenance        September 2014
    ///
    /// 3.2.  CDNSKEY Resource Record Format
    ///
    ///    The wire and presentation format of the CDNSKEY ("Child DNSKEY")
    ///    resource record is identical to the DNSKEY record.  IANA has
    ///    allocated RR code 60 for the CDNSKEY resource record via Expert
    ///    Review.  The CDNSKEY RR uses the same registries as DNSKEY for its
    ///    fields.
    ///
    ///    No special processing is performed by authoritative servers or by
    ///    resolvers, when serving or resolving.  For all practical purposes,
    ///    CDNSKEY is a regular RR type.
    /// ```
    CDNSKEY(DNSKEY),

    /// ```text
    /// RFC 7344              Delegation Trust Maintenance        September 2014
    ///
    /// 3.1.  CDS Resource Record Format
    ///    The wire and presentation format of the Child DS (CDS) resource
    ///    record is identical to the DS record [RFC4034].  IANA has allocated
    ///    RR code 59 for the CDS resource record via Expert Review
    ///    [DNS-TRANSPORT].  The CDS RR uses the same registries as DS for its
    ///    fields.
    ///
    ///    No special processing is performed by authoritative servers or by
    ///    resolvers, when serving or resolving.  For all practical purposes,
    ///    CDS is a regular RR type.
    /// ```
    CDS(DS),

    /// ```text
    /// RFC 4034                DNSSEC Resource Records               March 2005
    ///
    /// 2.1.  DNSKEY RDATA Wire Format
    ///
    ///    The RDATA for a DNSKEY RR consists of a 2 octet Flags Field, a 1
    ///    octet Protocol Field, a 1 octet Algorithm Field, and the Public Key
    ///    Field.
    ///
    ///                         1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    ///     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///    |              Flags            |    Protocol   |   Algorithm   |
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///    /                                                               /
    ///    /                            Public Key                         /
    ///    /                                                               /
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///
    /// 2.1.1.  The Flags Field
    ///
    ///    Bit 7 of the Flags field is the Zone Key flag.  If bit 7 has value 1,
    ///    then the DNSKEY record holds a DNS zone key, and the DNSKEY RR's
    ///    owner name MUST be the name of a zone.  If bit 7 has value 0, then
    ///    the DNSKEY record holds some other type of DNS public key and MUST
    ///    NOT be used to verify RRSIGs that cover RRsets.
    ///
    ///    Bit 15 of the Flags field is the Secure Entry Point flag, described
    ///    in [RFC3757].  If bit 15 has value 1, then the DNSKEY record holds a
    ///    key intended for use as a secure entry point.  This flag is only
    ///    intended to be a hint to zone signing or debugging software as to the
    ///    intended use of this DNSKEY record; validators MUST NOT alter their
    ///    behavior during the signature validation process in any way based on
    ///    the setting of this bit.  This also means that a DNSKEY RR with the
    ///    SEP bit set would also need the Zone Key flag set in order to be able
    ///    to generate signatures legally.  A DNSKEY RR with the SEP set and the
    ///    Zone Key flag not set MUST NOT be used to verify RRSIGs that cover
    ///    RRsets.
    ///
    ///    Bits 0-6 and 8-14 are reserved: these bits MUST have value 0 upon
    ///    creation of the DNSKEY RR and MUST be ignored upon receipt.
    ///
    /// RFC 5011                  Trust Anchor Update             September 2007
    ///
    /// 7.  IANA Considerations
    ///
    ///   The IANA has assigned a bit in the DNSKEY flags field (see Section 7
    ///   of [RFC4034]) for the REVOKE bit (8).
    /// ```
    DNSKEY(DNSKEY),

    /// ```text
    /// 5.1.  DS RDATA Wire Format
    ///
    /// The RDATA for a DS RR consists of a 2 octet Key Tag field, a 1 octet
    ///           Algorithm field, a 1 octet Digest Type field, and a Digest field.
    ///
    ///                          1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    ///      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    ///     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///     |           Key Tag             |  Algorithm    |  Digest Type  |
    ///     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///     /                                                               /
    ///     /                            Digest                             /
    ///     /                                                               /
    ///     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///
    /// 5.1.1.  The Key Tag Field
    ///
    ///    The Key Tag field lists the key tag of the DNSKEY RR referred to by
    ///    the DS record, in network byte order.
    ///
    ///    The Key Tag used by the DS RR is identical to the Key Tag used by
    ///    RRSIG RRs.  Appendix B describes how to compute a Key Tag.
    ///
    /// 5.1.2.  The Algorithm Field
    ///
    ///    The Algorithm field lists the algorithm number of the DNSKEY RR
    ///    referred to by the DS record.
    ///
    ///    The algorithm number used by the DS RR is identical to the algorithm
    ///    number used by RRSIG and DNSKEY RRs.  Appendix A.1 lists the
    ///    algorithm number types.
    ///
    /// 5.1.3.  The Digest Type Field
    ///
    ///    The DS RR refers to a DNSKEY RR by including a digest of that DNSKEY
    ///    RR.  The Digest Type field identifies the algorithm used to construct
    ///    the digest.  Appendix A.2 lists the possible digest algorithm types.
    ///
    /// 5.1.4.  The Digest Field
    ///
    ///    The DS record refers to a DNSKEY RR by including a digest of that
    ///    DNSKEY RR.
    ///
    ///    The digest is calculated by concatenating the canonical form of the
    ///    fully qualified owner name of the DNSKEY RR with the DNSKEY RDATA,
    ///    and then applying the digest algorithm.
    ///
    ///      digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
    ///
    ///       "|" denotes concatenation
    ///
    ///      DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
    ///
    ///    The size of the digest may vary depending on the digest algorithm and
    ///    DNSKEY RR size.  As of the time of this writing, the only defined
    ///    digest algorithm is SHA-1, which produces a 20 octet digest.
    /// ```
    DS(DS),

    /// ```text
    /// RFC 2535                DNS Security Extensions               March 1999
    ///
    /// 3.1 KEY RDATA format
    ///
    ///  The RDATA for a KEY RR consists of flags, a protocol octet, the
    ///  algorithm number octet, and the public key itself.  The format is as
    ///  follows:
    ///
    ///                       1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    ///   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///  |             flags             |    protocol   |   algorithm   |
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///  |                                                               /
    ///  /                          public key                           /
    ///  /                                                               /
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
    ///
    ///  The KEY RR is not intended for storage of certificates and a separate
    ///  certificate RR has been developed for that purpose, defined in [RFC
    ///  2538].
    ///
    ///  The meaning of the KEY RR owner name, flags, and protocol octet are
    ///  described in Sections 3.1.1 through 3.1.5 below.  The flags and
    ///  algorithm must be examined before any data following the algorithm
    ///  octet as they control the existence and format of any following data.
    ///  The algorithm and public key fields are described in Section 3.2.
    ///  The format of the public key is algorithm dependent.
    ///
    ///  KEY RRs do not specify their validity period but their authenticating
    ///  SIG RR(s) do as described in Section 4 below.
    /// ```
    KEY(KEY),

    /// ```text
    /// RFC 4034                DNSSEC Resource Records               March 2005
    ///
    /// 4.1.  NSEC RDATA Wire Format
    ///
    ///  The RDATA of the NSEC RR is as shown below:
    ///
    ///                       1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    ///   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///  /                      Next Domain Name                         /
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///  /                       Type Bit Maps                           /
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /// ```
    NSEC(NSEC),

    /// ```text
    /// RFC 5155                         NSEC3                        March 2008
    ///
    /// 3.2.  NSEC3 RDATA Wire Format
    ///
    ///  The RDATA of the NSEC3 RR is as shown below:
    ///
    ///                       1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    ///   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///  |   Hash Alg.   |     Flags     |          Iterations           |
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///  |  Salt Length  |                     Salt                      /
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///  |  Hash Length  |             Next Hashed Owner Name            /
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///  /                         Type Bit Maps                         /
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///
    ///  Hash Algorithm is a single octet.
    ///
    ///  Flags field is a single octet, the Opt-Out flag is the least
    ///  significant bit, as shown below:
    ///
    ///   0 1 2 3 4 5 6 7
    ///  +-+-+-+-+-+-+-+-+
    ///  |             |O|
    ///  +-+-+-+-+-+-+-+-+
    ///
    ///  Iterations is represented as a 16-bit unsigned integer, with the most
    ///  significant bit first.
    ///
    ///  Salt Length is represented as an unsigned octet.  Salt Length
    ///  represents the length of the Salt field in octets.  If the value is
    ///  zero, the following Salt field is omitted.
    ///
    ///  Salt, if present, is encoded as a sequence of binary octets.  The
    ///  length of this field is determined by the preceding Salt Length
    ///  field.
    ///
    ///  Hash Length is represented as an unsigned octet.  Hash Length
    ///  represents the length of the Next Hashed Owner Name field in octets.
    ///
    ///  The next hashed owner name is not base32 encoded, unlike the owner
    ///  name of the NSEC3 RR.  It is the unmodified binary hash value.  It
    ///  does not include the name of the containing zone.  The length of this
    ///  field is determined by the preceding Hash Length field.
    ///
    /// 3.2.1.  Type Bit Maps Encoding
    ///
    ///  The encoding of the Type Bit Maps field is the same as that used by
    ///  the NSEC RR, described in [RFC4034].  It is explained and clarified
    ///  here for clarity.
    ///
    ///  The RR type space is split into 256 window blocks, each representing
    ///  the low-order 8 bits of the 16-bit RR type space.  Each block that
    ///  has at least one active RR type is encoded using a single octet
    ///  window number (from 0 to 255), a single octet bitmap length (from 1
    ///  to 32) indicating the number of octets used for the bitmap of the
    ///  window block, and up to 32 octets (256 bits) of bitmap.
    ///
    ///  Blocks are present in the NSEC3 RR RDATA in increasing numerical
    ///  order.
    ///
    ///     Type Bit Maps Field = ( Window Block # | Bitmap Length | Bitmap )+
    ///
    ///     where "|" denotes concatenation.
    ///
    ///  Each bitmap encodes the low-order 8 bits of RR types within the
    ///  window block, in network bit order.  The first bit is bit 0.  For
    ///  window block 0, bit 1 corresponds to RR type 1 (A), bit 2 corresponds
    ///  to RR type 2 (NS), and so forth.  For window block 1, bit 1
    ///  corresponds to RR type 257, bit 2 to RR type 258.  If a bit is set to
    ///  1, it indicates that an RRSet of that type is present for the
    ///  original owner name of the NSEC3 RR.  If a bit is set to 0, it
    ///  indicates that no RRSet of that type is present for the original
    ///  owner name of the NSEC3 RR.
    ///
    ///  Since bit 0 in window block 0 refers to the non-existing RR type 0,
    ///  it MUST be set to 0.  After verification, the validator MUST ignore
    ///  the value of bit 0 in window block 0.
    ///
    ///  Bits representing Meta-TYPEs or QTYPEs as specified in Section 3.1 of
    ///  [RFC2929] or within the range reserved for assignment only to QTYPEs
    ///  and Meta-TYPEs MUST be set to 0, since they do not appear in zone
    ///  data.  If encountered, they must be ignored upon reading.
    ///
    ///  Blocks with no types present MUST NOT be included.  Trailing zero
    ///  octets in the bitmap MUST be omitted.  The length of the bitmap of
    ///  each block is determined by the type code with the largest numerical
    ///  value, within that block, among the set of RR types present at the
    ///  original owner name of the NSEC3 RR.  Trailing octets not specified
    ///  MUST be interpreted as zero octets.
    /// ```
    NSEC3(NSEC3),

    /// ```text
    /// RFC 5155                         NSEC3                        March 2008
    ///
    /// 4.2.  NSEC3PARAM RDATA Wire Format
    ///
    ///  The RDATA of the NSEC3PARAM RR is as shown below:
    ///
    ///                       1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    ///   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///  |   Hash Alg.   |     Flags     |          Iterations           |
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///  |  Salt Length  |                     Salt                      /
    ///  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///
    ///  Hash Algorithm is a single octet.
    ///
    ///  Flags field is a single octet.
    ///
    ///  Iterations is represented as a 16-bit unsigned integer, with the most
    ///  significant bit first.
    ///
    ///  Salt Length is represented as an unsigned octet.  Salt Length
    ///  represents the length of the following Salt field in octets.  If the
    ///  value is zero, the Salt field is omitted.
    ///
    ///  Salt, if present, is encoded as a sequence of binary octets.  The
    ///  length of this field is determined by the preceding Salt Length
    ///  field.
    /// ```
    NSEC3PARAM(NSEC3PARAM),

    /// ```text
    /// RFC 2535 & 2931   DNS Security Extensions               March 1999
    /// RFC 4034          DNSSEC Resource Records               March 2005
    ///
    /// 3.1.  RRSIG RDATA Wire Format
    ///
    ///    The RDATA for an RRSIG RR consists of a 2 octet Type Covered field, a
    ///    1 octet Algorithm field, a 1 octet Labels field, a 4 octet Original
    ///    TTL field, a 4 octet Signature Expiration field, a 4 octet Signature
    ///    Inception field, a 2 octet Key tag, the Signer's Name field, and the
    ///    Signature field.
    ///
    ///                         1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    ///     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///    |        Type Covered           |  Algorithm    |     Labels    |
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///    |                         Original TTL                          |
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///    |                      Signature Expiration                     |
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///    |                      Signature Inception                      |
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///    |            Key Tag            |                               /
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+         Signer's Name         /
    ///    /                                                               /
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///    /                                                               /
    ///    /                            Signature                          /
    ///    /                                                               /
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /// ```
    SIG(SIG),

    /// [RFC 8945, Secret Key Transaction Authentication for DNS](https://tools.ietf.org/html/rfc8945#section-4.2)
    ///
    /// ```text
    /// 4.2.  TSIG Record Format
    ///
    ///   The fields of the TSIG RR are described below.  All multi-octet
    ///   integers in the record are sent in network byte order (see
    ///   Section 2.3.2 of [RFC1035]).
    ///
    ///   NAME:  The name of the key used, in domain name syntax.  The name
    ///      should reflect the names of the hosts and uniquely identify the
    ///      key among a set of keys these two hosts may share at any given
    ///      time.  For example, if hosts A.site.example and B.example.net
    ///      share a key, possibilities for the key name include
    ///      <id>.A.site.example, <id>.B.example.net, and
    ///      <id>.A.site.example.B.example.net.  It should be possible for more
    ///      than one key to be in simultaneous use among a set of interacting
    ///      hosts.  This allows for periodic key rotation as per best
    ///      operational practices, as well as algorithm agility as indicated
    ///      by [RFC7696].
    ///
    ///      The name may be used as a local index to the key involved, but it
    ///      is recommended that it be globally unique.  Where a key is just
    ///      shared between two hosts, its name actually need only be
    ///      meaningful to them, but it is recommended that the key name be
    ///      mnemonic and incorporate the names of participating agents or
    ///      resources as suggested above.
    ///
    ///   TYPE:  This MUST be TSIG (250: Transaction SIGnature).
    ///
    ///   CLASS:  This MUST be ANY.
    ///
    ///   TTL:  This MUST be 0.
    ///
    ///   RDLENGTH:  (variable)
    ///
    ///   RDATA:  The RDATA for a TSIG RR consists of a number of fields,
    ///      described below:
    ///
    ///                            1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    ///        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    ///       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///       /                         Algorithm Name                        /
    ///       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///       |                                                               |
    ///       |          Time Signed          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///       |                               |            Fudge              |
    ///       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///       |          MAC Size             |                               /
    ///       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+             MAC               /
    ///       /                                                               /
    ///       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///       |          Original ID          |            Error              |
    ///       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///       |          Other Len            |                               /
    ///       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           Other Data          /
    ///       /                                                               /
    ///       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///
    ///   The contents of the RDATA fields are:
    ///
    ///   Algorithm Name:
    ///      an octet sequence identifying the TSIG algorithm in the domain
    ///      name syntax.  (Allowed names are listed in Table 3.)  The name is
    ///      stored in the DNS name wire format as described in [RFC1034].  As
    ///      per [RFC3597], this name MUST NOT be compressed.
    ///
    ///   Time Signed:
    ///      an unsigned 48-bit integer containing the time the message was
    ///      signed as seconds since 00:00 on 1970-01-01 UTC, ignoring leap
    ///      seconds.
    ///
    ///   Fudge:
    ///      an unsigned 16-bit integer specifying the allowed time difference
    ///      in seconds permitted in the Time Signed field.
    ///
    ///   MAC Size:
    ///      an unsigned 16-bit integer giving the length of the MAC field in
    ///      octets.  Truncation is indicated by a MAC Size less than the size
    ///      of the keyed hash produced by the algorithm specified by the
    ///      Algorithm Name.
    ///
    ///   MAC:
    ///      a sequence of octets whose contents are defined by the TSIG
    ///      algorithm used, possibly truncated as specified by the MAC Size.
    ///      The length of this field is given by the MAC Size.  Calculation of
    ///      the MAC is detailed in Section 4.3.
    ///
    ///   Original ID:
    ///      an unsigned 16-bit integer holding the message ID of the original
    ///      request message.  For a TSIG RR on a request, it is set equal to
    ///      the DNS message ID.  In a TSIG attached to a response -- or in
    ///      cases such as the forwarding of a dynamic update request -- the
    ///      field contains the ID of the original DNS request.
    ///
    ///   Error:
    ///      in responses, an unsigned 16-bit integer containing the extended
    ///      RCODE covering TSIG processing.  In requests, this MUST be zero.
    ///
    ///   Other Len:
    ///      an unsigned 16-bit integer specifying the length of the Other Data
    ///      field in octets.
    ///
    ///   Other Data:
    ///      additional data relevant to the TSIG record.  In responses, this
    ///      will be empty (i.e., Other Len will be zero) unless the content of
    ///      the Error field is BADTIME, in which case it will be a 48-bit
    ///      unsigned integer containing the server's current time as the
    ///      number of seconds since 00:00 on 1970-01-01 UTC, ignoring leap
    ///      seconds (see Section 5.2.3).  This document assigns no meaning to
    ///      its contents in requests.
    /// ```
    TSIG(TSIG),

    /// Unknown or unsupported DNSSec record data
    Unknown {
        /// RecordType code
        code: u16,
        /// RData associated to the record
        rdata: NULL,
    },
}

impl DNSSECRData {
    pub(crate) fn read(
        decoder: &mut BinDecoder<'_>,
        record_type: RecordType,
        rdata_length: Restrict<u16>,
    ) -> ProtoResult<Self> {
        match record_type {
            RecordType::CDNSKEY => {
                trace!("reading CDNSKEY");
                dnskey::read(decoder, rdata_length).map(DNSSECRData::CDNSKEY)
            }
            RecordType::CDS => {
                trace!("reading CDS");
                ds::read(decoder, rdata_length).map(DNSSECRData::CDS)
            }
            RecordType::DNSKEY => {
                trace!("reading DNSKEY");
                dnskey::read(decoder, rdata_length).map(DNSSECRData::DNSKEY)
            }
            RecordType::DS => {
                trace!("reading DS");
                ds::read(decoder, rdata_length).map(DNSSECRData::DS)
            }
            RecordType::KEY => {
                trace!("reading KEY");
                key::read(decoder, rdata_length).map(DNSSECRData::KEY)
            }
            RecordType::NSEC => {
                trace!("reading NSEC");
                nsec::read(decoder, rdata_length).map(DNSSECRData::NSEC)
            }
            RecordType::NSEC3 => {
                trace!("reading NSEC3");
                nsec3::read(decoder, rdata_length).map(DNSSECRData::NSEC3)
            }
            RecordType::NSEC3PARAM => {
                trace!("reading NSEC3PARAM");
                nsec3param::read(decoder).map(DNSSECRData::NSEC3PARAM)
            }
            RecordType::RRSIG => {
                trace!("reading RRSIG");
                sig::read(decoder, rdata_length).map(DNSSECRData::SIG)
            }
            RecordType::SIG => {
                trace!("reading SIG");
                sig::read(decoder, rdata_length).map(DNSSECRData::SIG)
            }
            RecordType::TSIG => {
                trace!("reading TSIG");
                tsig::read(decoder, rdata_length).map(DNSSECRData::TSIG)
            }
            r => {
                panic!("not a dnssec RecordType: {}", r);
            }
        }
    }

    pub(crate) fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
        match *self {
            DNSSECRData::CDNSKEY(ref cdnskey) => {
                encoder.with_canonical_names(|encoder| dnskey::emit(encoder, cdnskey))
            }
            DNSSECRData::CDS(ref cds) => {
                encoder.with_canonical_names(|encoder| ds::emit(encoder, cds))
            }
            DNSSECRData::DS(ref ds) => {
                encoder.with_canonical_names(|encoder| ds::emit(encoder, ds))
            }
            DNSSECRData::KEY(ref key) => {
                encoder.with_canonical_names(|encoder| key::emit(encoder, key))
            }
            DNSSECRData::DNSKEY(ref dnskey) => {
                encoder.with_canonical_names(|encoder| dnskey::emit(encoder, dnskey))
            }
            DNSSECRData::NSEC(ref nsec) => {
                encoder.with_canonical_names(|encoder| nsec::emit(encoder, nsec))
            }
            DNSSECRData::NSEC3(ref nsec3) => {
                encoder.with_canonical_names(|encoder| nsec3::emit(encoder, nsec3))
            }
            DNSSECRData::NSEC3PARAM(ref nsec3param) => {
                encoder.with_canonical_names(|encoder| nsec3param::emit(encoder, nsec3param))
            }
            DNSSECRData::SIG(ref sig) => {
                encoder.with_canonical_names(|encoder| sig::emit(encoder, sig))
            }
            DNSSECRData::TSIG(ref tsig) => tsig::emit(encoder, tsig),
            DNSSECRData::Unknown { ref rdata, .. } => {
                encoder.with_canonical_names(|encoder| null::emit(encoder, rdata))
            }
        }
    }

    pub(crate) fn to_record_type(&self) -> RecordType {
        match *self {
            DNSSECRData::CDNSKEY(..) => RecordType::CDNSKEY,
            DNSSECRData::CDS(..) => RecordType::CDS,
            DNSSECRData::DS(..) => RecordType::DS,
            DNSSECRData::KEY(..) => RecordType::KEY,
            DNSSECRData::DNSKEY(..) => RecordType::DNSKEY,
            DNSSECRData::NSEC(..) => RecordType::NSEC,
            DNSSECRData::NSEC3(..) => RecordType::NSEC3,
            DNSSECRData::NSEC3PARAM(..) => RecordType::NSEC3PARAM,
            DNSSECRData::SIG(..) => RecordType::SIG,
            DNSSECRData::TSIG(..) => RecordType::TSIG,
            DNSSECRData::Unknown { code, .. } => RecordType::Unknown(code),
        }
    }
}

impl fmt::Display for DNSSECRData {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        fn w<D: fmt::Display>(f: &mut fmt::Formatter<'_>, d: D) -> Result<(), fmt::Error> {
            write!(f, "{rdata}", rdata = d)
        }

        match self {
            DNSSECRData::CDNSKEY(key) => w(f, key),
            DNSSECRData::CDS(ds) => w(f, ds),
            DNSSECRData::DS(ds) => w(f, ds),
            DNSSECRData::KEY(key) => w(f, key),
            DNSSECRData::DNSKEY(key) => w(f, key),
            DNSSECRData::NSEC(nsec) => w(f, nsec),
            DNSSECRData::NSEC3(nsec3) => w(f, nsec3),
            DNSSECRData::NSEC3PARAM(nsec3param) => w(f, nsec3param),
            DNSSECRData::SIG(sig) => w(f, sig),
            DNSSECRData::TSIG(ref tsig) => w(f, tsig),
            DNSSECRData::Unknown { rdata, .. } => w(f, rdata),
        }
    }
}

impl From<DNSSECRData> for RData {
    fn from(rdata: DNSSECRData) -> RData {
        RData::DNSSEC(rdata)
    }
}