1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// Copyright 2015-2018 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use std::io;
use std::marker::PhantomData;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr};
use std::pin::Pin;
use std::task::{Context, Poll};

use async_trait::async_trait;
use futures::channel::mpsc::{unbounded, UnboundedReceiver};
use futures::stream::{Fuse, Peekable, Stream, StreamExt};
use futures::{ready, Future, FutureExt, TryFutureExt};
use log::debug;
use rand;
use rand::distributions::{uniform::Uniform, Distribution};

use crate::xfer::{BufStreamHandle, SerialMessage};

/// Trait for UdpSocket
#[async_trait]
pub trait UdpSocket
where
    Self: Sized + Unpin,
{
    /// UdpSocket
    async fn bind(addr: &SocketAddr) -> io::Result<Self>;
    /// Receive data from the socket and returns the number of bytes read and the address from
    /// where the data came on success.
    async fn recv_from(&mut self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)>;
    /// Send data to the given address.
    async fn send_to(&mut self, buf: &[u8], target: &SocketAddr) -> io::Result<usize>;
}

/// A UDP stream of DNS binary packets
#[must_use = "futures do nothing unless polled"]
pub struct UdpStream<S: Send> {
    socket: S,
    outbound_messages: Peekable<Fuse<UnboundedReceiver<SerialMessage>>>,
}

impl<S: UdpSocket + Send + 'static> UdpStream<S> {
    /// This method is intended for client connections, see `with_bound` for a method better for
    ///  straight listening. It is expected that the resolver wrapper will be responsible for
    ///  creating and managing new UdpStreams such that each new client would have a random port
    ///  (reduce chance of cache poisoning). This will return a randomly assigned local port.
    ///
    /// # Arguments
    ///
    /// * `name_server` - socket address for the remote server (used to determine IPv4 or IPv6)
    ///
    /// # Return
    ///
    /// a tuple of a Future Stream which will handle sending and receiving messages, and a
    ///  handle which can be used to send messages into the stream.
    #[allow(clippy::type_complexity)]
    pub fn new(
        name_server: SocketAddr,
    ) -> (
        Box<dyn Future<Output = Result<UdpStream<S>, io::Error>> + Send + Unpin>,
        BufStreamHandle,
    ) {
        let (message_sender, outbound_messages) = unbounded();
        let message_sender = BufStreamHandle::new(message_sender);

        // TODO: allow the bind address to be specified...
        // constructs a future for getting the next randomly bound port to a UdpSocket
        let next_socket = NextRandomUdpSocket::new(&name_server);

        // This set of futures collapses the next udp socket into a stream which can be used for
        //  sending and receiving udp packets.
        let stream = Box::new(next_socket.map_ok(move |socket| UdpStream {
            socket,
            outbound_messages: outbound_messages.fuse().peekable(),
        }));

        (stream, message_sender)
    }

    /// Initialize the Stream with an already bound socket. Generally this should be only used for
    ///  server listening sockets. See `new` for a client oriented socket. Specifically, this there
    ///  is already a bound socket in this context, whereas `new` makes sure to randomize ports
    ///  for additional cache poison prevention.
    ///
    /// # Arguments
    ///
    /// * `socket` - an already bound UDP socket
    ///
    /// # Return
    ///
    /// a tuple of a Future Stream which will handle sending and receiving messsages, and a
    ///  handle which can be used to send messages into the stream.
    pub fn with_bound(socket: S) -> (Self, BufStreamHandle) {
        let (message_sender, outbound_messages) = unbounded();
        let message_sender = BufStreamHandle::new(message_sender);

        let stream = UdpStream {
            socket,
            outbound_messages: outbound_messages.fuse().peekable(),
        };

        (stream, message_sender)
    }

    #[allow(unused)]
    pub(crate) fn from_parts(
        socket: S,
        outbound_messages: UnboundedReceiver<SerialMessage>,
    ) -> Self {
        UdpStream {
            socket,
            outbound_messages: outbound_messages.fuse().peekable(),
        }
    }
}

impl<S: Send> UdpStream<S> {
    #[allow(clippy::type_complexity)]
    fn pollable_split(
        &mut self,
    ) -> (
        &mut S,
        &mut Peekable<Fuse<UnboundedReceiver<SerialMessage>>>,
    ) {
        (&mut self.socket, &mut self.outbound_messages)
    }
}

impl<S: UdpSocket + Send + 'static> Stream for UdpStream<S> {
    type Item = Result<SerialMessage, io::Error>;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<Self::Item>> {
        let (socket, outbound_messages) = self.pollable_split();
        let mut socket = Pin::new(socket);
        let mut outbound_messages = Pin::new(outbound_messages);

        // this will not accept incoming data while there is data to send
        //  makes this self throttling.
        loop {
            // first try to send
            match outbound_messages.as_mut().poll_peek(cx) {
                Poll::Ready(Some(message)) => {
                    let addr = &message.addr();

                    // this wiil return if not ready,
                    //   meaning that sending will be prefered over receiving...

                    // TODO: shouldn't this return the error to send to the sender?
                    ready!(socket.send_to(message.bytes(), addr).poll_unpin(cx))?;
                }
                // now we get to drop through to the receives...
                // TODO: should we also return None if there are no more messages to send?
                Poll::Pending | Poll::Ready(None) => break,
            }

            // message sent, need to pop the message
            assert!(outbound_messages.as_mut().poll_next(cx).is_ready());
        }

        // For QoS, this will only accept one message and output that
        // receive all inbound messages

        // TODO: this should match edns settings
        let mut buf = [0u8; 2048];
        let (len, src) = ready!(socket.recv_from(&mut buf).poll_unpin(cx))?;

        Poll::Ready(Some(Ok(SerialMessage::new(
            buf.iter().take(len).cloned().collect(),
            src,
        ))))
    }
}

#[must_use = "futures do nothing unless polled"]
pub(crate) struct NextRandomUdpSocket<S> {
    bind_address: IpAddr,
    marker: PhantomData<S>,
}

impl<S: UdpSocket> NextRandomUdpSocket<S> {
    /// Creates a future for randomly binding to a local socket address for client connections.
    pub(crate) fn new(name_server: &SocketAddr) -> NextRandomUdpSocket<S> {
        let zero_addr: IpAddr = match *name_server {
            SocketAddr::V4(..) => IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)),
            SocketAddr::V6(..) => IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)),
        };

        NextRandomUdpSocket {
            bind_address: zero_addr,
            marker: PhantomData,
        }
    }

    async fn bind(zero_addr: SocketAddr) -> Result<S, io::Error> {
        S::bind(&zero_addr).await
    }
}

impl<S: UdpSocket> Future for NextRandomUdpSocket<S> {
    type Output = Result<S, io::Error>;

    /// polls until there is an available next random UDP port.
    ///
    /// if there is no port available after 10 attempts, returns NotReady
    fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
        let rand_port_range = Uniform::new_inclusive(1025_u16, u16::max_value());
        let mut rand = rand::thread_rng();

        for attempt in 0..10 {
            let port = rand_port_range.sample(&mut rand); // the range is [0 ... u16::max]
            let zero_addr = SocketAddr::new(self.bind_address, port);

            // TODO: allow TTL to be adjusted...
            // TODO: this immediate poll might be wrong in some cases...
            match Box::pin(Self::bind(zero_addr)).as_mut().poll(cx) {
                Poll::Ready(Ok(socket)) => {
                    debug!("created socket successfully");
                    return Poll::Ready(Ok(socket));
                }
                Poll::Ready(Err(err)) => {
                    debug!("unable to bind port, attempt: {}: {}", attempt, err)
                }
                Poll::Pending => debug!("unable to bind port, attempt: {}", attempt),
            }
        }

        debug!("could not get next random port, delaying");

        // FIXME: this replaced task::current().notify();
        cx.waker().wake_by_ref();

        // returning NotReady here, perhaps the next poll there will be some more socket available.
        Poll::Pending
    }
}

#[test]
fn test_next_random_socket() {
    use tokio::{self, runtime};

    let mut io_loop = runtime::Runtime::new().unwrap();
    let (stream, _) = UdpStream::<tokio::net::UdpSocket>::new(SocketAddr::new(
        IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
        52,
    ));
    drop(
        io_loop
            .block_on(stream)
            .expect("failed to get next socket address"),
    );
}

#[test]
fn test_udp_stream_ipv4() {
    udp_stream_test(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)))
}

#[test]
#[cfg(not(target_os = "linux"))] // ignored until Travis-CI fixes IPv6
fn test_udp_stream_ipv6() {
    udp_stream_test(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)))
}
#[cfg(feature = "tokio-compat")]
use tokio::net;

#[cfg(feature = "tokio-compat")]
#[async_trait]
impl UdpSocket for net::UdpSocket {
    async fn bind(addr: &SocketAddr) -> io::Result<Self> {
        net::UdpSocket::bind(addr).await
    }

    async fn recv_from(&mut self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
        self.recv_from(buf).await
    }

    async fn send_to(&mut self, buf: &[u8], target: &SocketAddr) -> io::Result<usize> {
        self.send_to(buf, target).await
    }
}

#[cfg(test)]
fn udp_stream_test(server_addr: IpAddr) {
    use tokio::runtime;

    use std::net::ToSocketAddrs;
    let succeeded = std::sync::Arc::new(std::sync::atomic::AtomicBool::new(false));
    let succeeded_clone = succeeded.clone();
    std::thread::Builder::new()
        .name("thread_killer".to_string())
        .spawn(move || {
            let succeeded = succeeded_clone;
            for _ in 0..15 {
                std::thread::sleep(std::time::Duration::from_secs(1));
                if succeeded.load(std::sync::atomic::Ordering::Relaxed) {
                    return;
                }
            }

            panic!("timeout");
        })
        .unwrap();

    let server = std::net::UdpSocket::bind(SocketAddr::new(server_addr, 0)).unwrap();
    server
        .set_read_timeout(Some(std::time::Duration::from_secs(5)))
        .unwrap(); // should receive something within 5 seconds...
    server
        .set_write_timeout(Some(std::time::Duration::from_secs(5)))
        .unwrap(); // should receive something within 5 seconds...
    let server_addr = server.local_addr().unwrap();

    let test_bytes: &'static [u8; 8] = b"DEADBEEF";
    let send_recv_times = 4;

    // an in and out server
    let server_handle = std::thread::Builder::new()
        .name("test_udp_stream_ipv4:server".to_string())
        .spawn(move || {
            let mut buffer = [0_u8; 512];

            for _ in 0..send_recv_times {
                // wait for some bytes...
                let (len, addr) = server.recv_from(&mut buffer).expect("receive failed");

                assert_eq!(&buffer[0..len], test_bytes);

                // bounce them right back...
                assert_eq!(
                    server.send_to(&buffer[0..len], addr).expect("send failed"),
                    len
                );
            }
        })
        .unwrap();

    // setup the client, which is going to run on the testing thread...
    let mut io_loop = runtime::Runtime::new().unwrap();

    // the tests should run within 5 seconds... right?
    // TODO: add timeout here, so that test never hangs...
    let client_addr = match server_addr {
        std::net::SocketAddr::V4(_) => "127.0.0.1:0",
        std::net::SocketAddr::V6(_) => "[::1]:0",
    };

    let socket = io_loop
        .block_on(net::UdpSocket::bind(
            &client_addr.to_socket_addrs().unwrap().next().unwrap(),
        ))
        .expect("could not create socket"); // some random address...
    let (mut stream, sender) = UdpStream::<net::UdpSocket>::with_bound(socket);
    //let mut stream: UdpStream = io_loop.block_on(stream).ok().unwrap();

    for _ in 0..send_recv_times {
        // test once
        sender
            .unbounded_send(SerialMessage::new(test_bytes.to_vec(), server_addr))
            .unwrap();
        let (buffer_and_addr, stream_tmp) = io_loop.block_on(stream.into_future());
        stream = stream_tmp;
        let message = buffer_and_addr
            .expect("no buffer received")
            .expect("error receiving buffer");
        assert_eq!(message.bytes(), test_bytes);
        assert_eq!(message.addr(), server_addr);
    }

    succeeded.store(true, std::sync::atomic::Ordering::Relaxed);
    server_handle.join().expect("server thread failed");
}