1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
use crate::*;
use rayon::prelude::*;
use rustc_hash::FxHashSet as HashSet;
use std::collections::vec_deque;
use std::collections::VecDeque;
use std::iter::Peekable;
use truck_base::entry_map::FxEntryMap as EntryMap;

impl<P, C> Wire<P, C> {
    /// Creates the empty wire.
    #[inline(always)]
    pub fn new() -> Wire<P, C> { Self::default() }

    /// Creates the empty wire with space for at least `capacity` edges.
    #[inline(always)]
    pub fn with_capacity(capacity: usize) -> Wire<P, C> {
        Wire {
            edge_list: VecDeque::with_capacity(capacity),
        }
    }

    /// Returns an iterator over the edges. Practically, an alias of `iter()`.
    #[inline(always)]
    pub fn edge_iter(&self) -> EdgeIter<'_, P, C> { self.iter() }
    /// Returns a mutable iterator over the edges. Practically, an alias of `iter_mut()`.
    #[inline(always)]
    pub fn edge_iter_mut(&mut self) -> EdgeIterMut<'_, P, C> { self.iter_mut() }
    /// Creates a consuming iterator. Practically, an alias of `into_iter()`.
    #[inline(always)]
    pub fn edge_into_iter(self) -> EdgeIntoIter<P, C> { self.into_iter() }
    /// Returns an parallel iterator over the edges. Practically, an alias of `par_iter()`.
    #[inline(always)]
    pub fn edge_par_iter(&self) -> EdgeParallelIter<'_, P, C>
    where
        P: Send,
        C: Send, {
        self.par_iter()
    }
    /// Returns a mutable parallel iterator over the edges. Practically, an alias of `par_iter_mut()`.
    #[inline(always)]
    pub fn edge_par_iter_mut(&mut self) -> EdgeParallelIterMut<'_, P, C>
    where
        P: Send,
        C: Send, {
        self.par_iter_mut()
    }
    /// Creates a consuming iterator. Practically, an alias of `into_par_iter()`.
    #[inline(always)]
    pub fn edge_into_par_iter(self) -> EdgeParallelIntoIter<P, C>
    where
        P: Send,
        C: Send, {
        self.into_par_iter()
    }

    /// Returns an iterator over the vertices.
    #[inline(always)]
    pub fn vertex_iter(&self) -> VertexIter<'_, P, C> {
        VertexIter {
            edge_iter: self.edge_iter().peekable(),
            unconti_next: None,
            cyclic: self.is_cyclic(),
        }
    }

    /// Returns the front edge. If `self` is empty wire, returns None.  
    /// Practically, an alias of the inherited method `VecDeque::front()`.
    #[inline(always)]
    pub fn front_edge(&self) -> Option<&Edge<P, C>> { self.front() }

    /// Returns the front vertex. If `self` is empty wire, returns None.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(), (), ()]);
    /// let mut wire = Wire::new();
    /// assert_eq!(wire.front_vertex(), None);
    /// wire.push_back(Edge::new(&v[1], &v[2], ()));
    /// wire.push_front(Edge::new(&v[0], &v[1], ()));
    /// assert_eq!(wire.front_vertex(), Some(&v[0]));
    /// ```
    #[inline(always)]
    pub fn front_vertex(&self) -> Option<&Vertex<P>> { self.front().map(|edge| edge.front()) }

    /// Returns the back edge. If `self` is empty wire, returns None.  
    /// Practically, an alias of the inherited method `VecDeque::back()`
    #[inline(always)]
    pub fn back_edge(&self) -> Option<&Edge<P, C>> { self.back() }

    /// Returns the back edge. If `self` is empty wire, returns None.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(), (), ()]);
    /// let mut wire = Wire::new();
    /// assert_eq!(wire.back_vertex(), None);
    /// wire.push_back(Edge::new(&v[1], &v[2], ()));
    /// wire.push_front(Edge::new(&v[0], &v[1], ()));
    /// assert_eq!(wire.back_vertex(), Some(&v[2]));
    /// ```
    #[inline(always)]
    pub fn back_vertex(&self) -> Option<&Vertex<P>> { self.back().map(|edge| edge.back()) }

    /// Returns vertices at both ends.
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(); 3]);
    /// let mut wire = Wire::new();
    /// assert_eq!(wire.back_vertex(), None);
    /// wire.push_back(Edge::new(&v[1], &v[2], ()));
    /// wire.push_front(Edge::new(&v[0], &v[1], ()));
    /// assert_eq!(wire.ends_vertices(), Some((&v[0], &v[2])));
    /// ```
    #[inline(always)]
    pub fn ends_vertices(&self) -> Option<(&Vertex<P>, &Vertex<P>)> {
        match (self.front_vertex(), self.back_vertex()) {
            (Some(got0), Some(got1)) => Some((got0, got1)),
            _ => None,
        }
    }

    /// Moves all the faces of `other` into `self`, leaving `other` empty.
    #[inline(always)]
    pub fn append(&mut self, other: &mut Wire<P, C>) { self.edge_list.append(&mut other.edge_list) }

    /// Splits the `Wire` into two at the given index.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(); 7]);
    /// let mut wire = Wire::new();
    /// for i in 0..6 {
    ///    wire.push_back(Edge::new(&v[i], &v[i + 1], ()));
    /// }
    /// let original_wire = wire.clone();
    /// let mut wire1 = wire.split_off(4);
    /// assert_eq!(wire.len(), 4);
    /// assert_eq!(wire1.len(), 2);
    /// wire.append(&mut wire1);
    /// assert_eq!(original_wire, wire);
    /// ```
    /// # Panics
    /// Panics if `at > self.len()`
    #[inline(always)]
    pub fn split_off(&mut self, at: usize) -> Wire<P, C> {
        Wire {
            edge_list: self.edge_list.split_off(at),
        }
    }

    /// Inverts the wire.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(); 4]);
    /// let mut wire = Wire::from(vec![
    ///     Edge::new(&v[3], &v[2], ()),
    ///     Edge::new(&v[2], &v[1], ()),
    ///     Edge::new(&v[1], &v[0], ()),
    /// ]);
    /// wire.invert();
    /// for (i, vert) in wire.vertex_iter().enumerate() {
    ///     assert_eq!(v[i], vert);
    /// }
    /// ```
    #[inline(always)]
    pub fn invert(&mut self) -> &mut Self {
        *self = self.inverse();
        self
    }

    /// Returns the inverse wire.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(); 4]);
    /// let mut wire = Wire::from(vec![
    ///     Edge::new(&v[3], &v[2], ()),
    ///     Edge::new(&v[2], &v[1], ()),
    ///     Edge::new(&v[1], &v[0], ()),
    /// ]);
    /// let inverse = wire.inverse();
    /// wire.invert();
    /// for (edge0, edge1) in wire.edge_iter().zip(inverse.edge_iter()) {
    ///     assert_eq!(edge0, edge1);
    /// }
    /// ```
    #[inline(always)]
    pub fn inverse(&self) -> Wire<P, C> {
        let edge_list = self.edge_iter().rev().map(|edge| edge.inverse()).collect();
        Wire { edge_list }
    }

    /// Returns whether all the adjacent pairs of edges have shared vertices or not.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(); 4]);
    /// let mut wire = Wire::from(vec![
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[2], &v[3], ()),
    /// ]);
    /// assert!(!wire.is_continuous());
    /// wire.insert(1, Edge::new(&v[1], &v[2], ()));
    /// assert!(wire.is_continuous());
    /// ```
    /// ```
    /// use truck_topology::*;
    /// // The empty wire is continuous
    /// assert!(Wire::<(), ()>::new().is_continuous());
    /// ```
    pub fn is_continuous(&self) -> bool {
        let mut iter = self.edge_iter();
        if let Some(edge) = iter.next() {
            let mut prev = edge.back();
            for edge in iter {
                if prev != edge.front() {
                    return false;
                }
                prev = edge.back();
            }
        }
        true
    }

    /// Returns whether the front vertex of the wire is the same as the back one or not.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(); 4]);
    /// let mut wire = Wire::from(vec![
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[2], &v[3], ()),
    /// ]);
    /// assert!(!wire.is_cyclic());
    /// wire.push_back(Edge::new(&v[3], &v[0], ()));
    /// assert!(wire.is_cyclic());
    /// ```
    /// ```
    /// use truck_topology::*;
    /// // The empty wire is cyclic.
    /// assert!(Wire::<(), ()>::new().is_cyclic());
    /// ```
    #[inline(always)]
    pub fn is_cyclic(&self) -> bool { self.front_vertex() == self.back_vertex() }

    /// Returns whether the wire is closed or not.
    /// Here, "closed" means "continuous" and "cyclic".
    #[inline(always)]
    pub fn is_closed(&self) -> bool { self.is_continuous() && self.is_cyclic() }

    /// Returns whether simple or not.
    /// Here, "simple" means all the vertices in the wire are shared from only two edges at most.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(); 4]);
    /// let edge0 = Edge::new(&v[0], &v[1], ());
    /// let edge1 = Edge::new(&v[1], &v[2], ());
    /// let edge2 = Edge::new(&v[2], &v[3], ());
    /// let edge3 = Edge::new(&v[3], &v[1], ());
    /// let edge4 = Edge::new(&v[3], &v[0], ());
    ///
    /// let wire0 = Wire::from_iter(vec![&edge0, &edge1, &edge2, &edge3]);
    /// let wire1 = Wire::from(vec![edge0, edge1, edge2, edge4]);
    ///
    /// assert!(!wire0.is_simple());
    /// assert!(wire1.is_simple());
    /// ```
    /// ```
    /// use truck_topology::*;
    /// // The empty wire is simple.
    /// assert!(Wire::<(), ()>::new().is_simple());
    /// ```
    pub fn is_simple(&self) -> bool {
        let mut set = HashSet::default();
        self.vertex_iter()
            .all(move |vertex| set.insert(vertex.id()))
    }

    /// Determines whether all the wires in `wires` has no same vertices.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    ///
    /// let v = Vertex::news(&[(), (), (), (), ()]);
    /// let edge0 = Edge::new(&v[0], &v[1], ());
    /// let edge1 = Edge::new(&v[1], &v[2], ());
    /// let edge2 = Edge::new(&v[2], &v[3], ());
    /// let edge3 = Edge::new(&v[3], &v[4], ());
    ///
    /// let wire0 = Wire::from(vec![edge0, edge1]);
    /// let wire1 = Wire::from(vec![edge2]);
    /// let wire2 = Wire::from(vec![edge3]);
    ///
    /// assert!(Wire::disjoint_wires(&[wire0.clone(), wire2]));
    /// assert!(!Wire::disjoint_wires(&[wire0, wire1]));
    /// ```
    pub fn disjoint_wires(wires: &[Wire<P, C>]) -> bool {
        let mut set = HashSet::default();
        wires.iter().all(move |wire| {
            let mut vec = Vec::new();
            let res = wire.vertex_iter().all(|v| {
                vec.push(v.id());
                !set.contains(&v.id())
            });
            set.extend(vec);
            res
        })
    }

    /// Swap one edge into two edges.
    ///
    /// # Arguments
    /// - `idx`: Index of edge in wire
    /// - `edges`: Inserted edges
    ///
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(), (), (), (), ()]);
    /// let edge0 = Edge::new(&v[0], &v[1], 0);
    /// let edge1 = Edge::new(&v[1], &v[3], 1);
    /// let edge2 = Edge::new(&v[3], &v[4], 2);
    /// let edge3 = Edge::new(&v[1], &v[2], 3);
    /// let edge4 = Edge::new(&v[2], &v[3], 4);
    /// let mut wire0 = Wire::from(vec![
    ///     edge0.clone(), edge1, edge2.clone()
    /// ]);
    /// let wire1 = Wire::from(vec![
    ///     edge0, edge3.clone(), edge4.clone(), edge2
    /// ]);
    /// assert_ne!(wire0, wire1);
    /// wire0.swap_edge_into_wire(1, Wire::from(vec![edge3, edge4]));
    /// assert_eq!(wire0, wire1);
    /// ```
    ///
    /// # Panics
    /// Panic occars if `idx >= self.len()`.
    ///
    /// # Failure
    /// Returns `false` and `self` will not be changed if the end vertices of `self[idx]` and the ones of `wire` is not the same.
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(), (), (), (), ()]);
    /// let edge0 = Edge::new(&v[0], &v[1], 0);
    /// let edge1 = Edge::new(&v[1], &v[3], 1);
    /// let edge2 = Edge::new(&v[3], &v[4], 2);
    /// let edge3 = Edge::new(&v[1], &v[2], 3);
    /// let edge4 = Edge::new(&v[2], &v[1], 4);
    /// let mut wire0 = Wire::from(vec![
    ///     edge0.clone(), edge1, edge2.clone()
    /// ]);
    /// let backup = wire0.clone();
    /// // The end vertices of wire[1] == edge1 is (v[1], v[3]).
    /// // The end points of new wire [edge3, edge4] is (v[1], v[1]).
    /// // Since the back vertices are different, returns false and do nothing.
    /// assert!(!wire0.swap_edge_into_wire(1, Wire::from(vec![edge3, edge4])));
    /// assert_eq!(wire0, backup);
    /// ```
    pub fn swap_edge_into_wire(&mut self, idx: usize, wire: Wire<P, C>) -> bool {
        if wire.is_empty() || self[idx].ends() != wire.ends_vertices().unwrap() {
            return false;
        }
        let mut new_wire: Vec<_> = self.drain(0..idx).collect();
        new_wire.extend(wire);
        self.pop_front();
        new_wire.extend(self.drain(..));
        *self = new_wire.into();
        true
    }
    /// Concat edges
    pub(super) fn swap_subwire_into_edges(&mut self, mut idx: usize, edge: Edge<P, C>) {
        if idx + 1 == self.len() {
            self.rotate_left(1);
            idx -= 1;
        }
        let mut new_wire: Vec<_> = self.drain(0..idx).collect();
        new_wire.push(edge);
        self.pop_front();
        self.pop_front();
        new_wire.extend(self.drain(..));
        *self = new_wire.into();
    }

    pub(super) fn sub_try_mapped<'a, Q, D, KF, KV>(
        &'a self,
        edge_map: &mut EdgeEntryMapForTryMapping<'a, P, C, Q, D, KF, KV>,
    ) -> Option<Wire<Q, D>>
    where
        KF: FnMut(&'a Edge<P, C>) -> EdgeID<C>,
        KV: FnMut(&'a Edge<P, C>) -> Option<Edge<Q, D>>,
    {
        self.edge_iter()
            .map(|edge| Some(edge_map.entry_or_insert(edge).as_ref()?.absolute_clone()))
            .collect()
    }

    /// Returns a new wire whose curves are mapped by `curve_mapping` and
    /// whose points are mapped by `point_mapping`.
    /// # Remarks
    /// Accessing geometry elements directly in the closure will result in a deadlock.
    /// So, this method does not appear to the document.
    #[doc(hidden)]
    pub fn try_mapped<Q, D>(
        &self,
        mut point_mapping: impl FnMut(&P) -> Option<Q>,
        mut curve_mapping: impl FnMut(&C) -> Option<D>,
    ) -> Option<Wire<Q, D>> {
        let mut vertex_map = EntryMap::new(Vertex::id, move |v| v.try_mapped(&mut point_mapping));
        let mut edge_map = EntryMap::new(
            Edge::id,
            edge_entry_map_try_closure(&mut vertex_map, &mut curve_mapping),
        );
        self.sub_try_mapped(&mut edge_map)
    }

    pub(super) fn sub_mapped<'a, Q, D, KF, KV>(
        &'a self,
        edge_map: &mut EdgeEntryMapForMapping<'a, P, C, Q, D, KF, KV>,
    ) -> Wire<Q, D>
    where
        KF: FnMut(&'a Edge<P, C>) -> EdgeID<C>,
        KV: FnMut(&'a Edge<P, C>) -> Edge<Q, D>,
    {
        self.edge_iter()
            .map(|edge| {
                let new_edge = edge_map.entry_or_insert(edge);
                match edge.orientation() {
                    true => new_edge.clone(),
                    false => new_edge.inverse(),
                }
            })
            .collect()
    }
    /// Returns a new wire whose curves are mapped by `curve_mapping` and
    /// whose points are mapped by `point_mapping`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[0, 1, 2, 3, 4]);
    /// let wire0: Wire<usize, usize> = vec![
    ///     Edge::new(&v[0], &v[1], 100),
    ///     Edge::new(&v[2], &v[1], 110).inverse(),
    ///     Edge::new(&v[3], &v[4], 120),
    ///     Edge::new(&v[4], &v[0], 130),
    /// ].into();
    /// let wire1 = wire0.mapped(
    ///     &move |i: &usize| *i as f64 + 0.5,
    ///     &move |j: &usize| *j as f64 + 1000.5,
    /// );
    ///
    /// // Check the points
    /// for (v0, v1) in wire0.vertex_iter().zip(wire1.vertex_iter()) {
    ///     let i = v0.get_point();
    ///     let j = v1.get_point();
    ///     assert_eq!(i as f64 + 0.5, j);
    /// }
    ///
    /// // Check the curves and orientation
    /// for (edge0, edge1) in wire0.edge_iter().zip(wire1.edge_iter()) {
    ///     let i = edge0.get_curve();
    ///     let j = edge1.get_curve();
    ///     assert_eq!(i as f64 + 1000.5, j);
    ///     assert_eq!(edge0.orientation(), edge1.orientation());
    /// }
    ///
    /// // Check the connection
    /// assert_eq!(wire1[0].back(), wire1[1].front());
    /// assert_ne!(wire1[1].back(), wire1[2].front());
    /// assert_eq!(wire1[2].back(), wire1[3].front());
    /// assert_eq!(wire1[3].back(), wire1[0].front());
    /// ```
    /// # Remarks
    /// Accessing geometry elements directly in the closure will result in a deadlock.
    /// So, this method does not appear to the document.
    #[doc(hidden)]
    pub fn mapped<Q, D>(
        &self,
        mut point_mapping: impl FnMut(&P) -> Q,
        mut curve_mapping: impl FnMut(&C) -> D,
    ) -> Wire<Q, D> {
        let mut vertex_map = EntryMap::new(Vertex::id, move |v| v.mapped(&mut point_mapping));
        let mut edge_map = EntryMap::new(
            Edge::id,
            edge_entry_map_closure(&mut vertex_map, &mut curve_mapping),
        );
        self.sub_mapped(&mut edge_map)
    }

    /// Returns the consistence of the geometry of end vertices
    /// and the geometry of edge.
    #[inline(always)]
    pub fn is_geometric_consistent(&self) -> bool
    where
        P: Tolerance,
        C: BoundedCurve<Point = P>, {
        self.iter().all(|edge| edge.is_geometric_consistent())
    }

    /// Creates display struct for debugging the wire.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use WireDisplayFormat as WDF;
    /// let v = Vertex::news(&[0, 1, 2, 3, 4]);
    /// let wire: Wire<usize, usize> = vec![
    ///     Edge::new(&v[0], &v[1], 100),
    ///     Edge::new(&v[2], &v[1], 110).inverse(),
    ///     Edge::new(&v[3], &v[4], 120),
    /// ].into();
    ///
    /// let vertex_format = VertexDisplayFormat::AsPoint;
    /// let edge_format = EdgeDisplayFormat::VerticesTuple { vertex_format };
    ///
    /// assert_eq!(
    ///     &format!("{:?}", wire.display(WDF::EdgesListTuple {edge_format})),
    ///     "Wire([(0, 1), (1, 2), (3, 4)])",
    /// );
    /// assert_eq!(
    ///     &format!("{:?}", wire.display(WDF::EdgesList {edge_format})),
    ///     "[(0, 1), (1, 2), (3, 4)]",
    /// );
    /// assert_eq!(
    ///     &format!("{:?}", wire.display(WDF::VerticesList {vertex_format})),
    ///     "[0, 1, 2, 3, 4]",
    /// );
    /// ```
    #[inline(always)]
    pub fn display(&self, format: WireDisplayFormat) -> DebugDisplay<'_, Self, WireDisplayFormat> {
        DebugDisplay {
            entity: self,
            format,
        }
    }
}

type EdgeEntryMapForTryMapping<'a, P, C, Q, D, KF, KV> =
    EntryMap<EdgeID<C>, Option<Edge<Q, D>>, KF, KV, &'a Edge<P, C>>;
type EdgeEntryMapForMapping<'a, P, C, Q, D, KF, KV> =
    EntryMap<EdgeID<C>, Edge<Q, D>, KF, KV, &'a Edge<P, C>>;

pub(super) fn edge_entry_map_try_closure<'a, P, C, Q, D, KF, VF>(
    vertex_map: &'a mut EntryMap<VertexID<P>, Option<Vertex<Q>>, KF, VF, &'a Vertex<P>>,
    curve_mapping: &'a mut impl FnMut(&C) -> Option<D>,
) -> impl FnMut(&'a Edge<P, C>) -> Option<Edge<Q, D>> + 'a
where
    KF: FnMut(&'a Vertex<P>) -> VertexID<P>,
    VF: FnMut(&'a Vertex<P>) -> Option<Vertex<Q>>,
{
    move |edge| {
        let vf = edge.absolute_front();
        let vertex0 = vertex_map.entry_or_insert(vf).clone()?;
        let vb = edge.absolute_back();
        let vertex1 = vertex_map.entry_or_insert(vb).clone()?;
        let curve = curve_mapping(&*edge.curve.lock().unwrap())?;
        Some(Edge::debug_new(&vertex0, &vertex1, curve))
    }
}

pub(super) fn edge_entry_map_closure<'a, P, C, Q, D, KF, VF>(
    vertex_map: &'a mut EntryMap<VertexID<P>, Vertex<Q>, KF, VF, &'a Vertex<P>>,
    curve_mapping: &'a mut impl FnMut(&C) -> D,
) -> impl FnMut(&'a Edge<P, C>) -> Edge<Q, D> + 'a
where
    KF: FnMut(&'a Vertex<P>) -> VertexID<P>,
    VF: FnMut(&'a Vertex<P>) -> Vertex<Q>,
{
    move |edge| {
        let vf = edge.absolute_front();
        let vertex0 = vertex_map.entry_or_insert(vf).clone();
        let vb = edge.absolute_back();
        let vertex1 = vertex_map.entry_or_insert(vb).clone();
        let curve = curve_mapping(&*edge.curve.lock().unwrap());
        Edge::debug_new(&vertex0, &vertex1, curve)
    }
}

impl<T, P, C> From<T> for Wire<P, C>
where T: Into<VecDeque<Edge<P, C>>>
{
    #[inline(always)]
    fn from(edge_list: T) -> Wire<P, C> {
        Wire {
            edge_list: edge_list.into(),
        }
    }
}

impl<P, C> FromIterator<Edge<P, C>> for Wire<P, C> {
    #[inline(always)]
    fn from_iter<I: IntoIterator<Item = Edge<P, C>>>(iter: I) -> Wire<P, C> {
        Wire::from(VecDeque::from_iter(iter))
    }
}

impl<'a, P, C> FromIterator<&'a Edge<P, C>> for Wire<P, C> {
    #[inline(always)]
    fn from_iter<I: IntoIterator<Item = &'a Edge<P, C>>>(iter: I) -> Wire<P, C> {
        Wire::from(VecDeque::from_iter(iter.into_iter().map(Edge::clone)))
    }
}

impl<P, C> IntoIterator for Wire<P, C> {
    type Item = Edge<P, C>;
    type IntoIter = EdgeIntoIter<P, C>;
    #[inline(always)]
    fn into_iter(self) -> Self::IntoIter { self.edge_list.into_iter() }
}

impl<'a, P, C> IntoIterator for &'a Wire<P, C> {
    type Item = &'a Edge<P, C>;
    type IntoIter = EdgeIter<'a, P, C>;
    #[inline(always)]
    fn into_iter(self) -> Self::IntoIter { self.edge_list.iter() }
}

/// The reference iterator over all edges in a wire.
pub type EdgeIter<'a, P, C> = vec_deque::Iter<'a, Edge<P, C>>;
/// The mutable reference iterator over all edges in a wire.
pub type EdgeIterMut<'a, P, C> = vec_deque::IterMut<'a, Edge<P, C>>;
/// The into iterator over all edges in a wire.
pub type EdgeIntoIter<P, C> = vec_deque::IntoIter<Edge<P, C>>;
/// The reference parallel iterator over all edges in a wire.
pub type EdgeParallelIter<'a, P, C> = <VecDeque<Edge<P, C>> as IntoParallelRefIterator<'a>>::Iter;
/// The mutable reference parallel iterator over all edges in a wire.
pub type EdgeParallelIterMut<'a, P, C> =
    <VecDeque<Edge<P, C>> as IntoParallelRefMutIterator<'a>>::Iter;
/// the parallel iterator over all edges in a wire.
pub type EdgeParallelIntoIter<P, C> = <VecDeque<Edge<P, C>> as IntoParallelIterator>::Iter;

/// The iterator over all the vertices included in a wire.
/// # Details
/// Fundamentally, the iterator runs over all the vertices in a wire.
/// ```
/// use truck_topology::*;
/// let v = Vertex::news(&[(); 6]);
/// let wire = Wire::from(vec![
///     Edge::new(&v[0], &v[1], ()),
///     Edge::new(&v[2], &v[3], ()),
///     Edge::new(&v[4], &v[5], ()),
/// ]);
/// let mut viter = wire.vertex_iter();
/// assert_eq!(viter.next().as_ref(), Some(&v[0]));
/// assert_eq!(viter.next().as_ref(), Some(&v[1]));
/// assert_eq!(viter.next().as_ref(), Some(&v[2]));
/// assert_eq!(viter.next().as_ref(), Some(&v[3]));
/// assert_eq!(viter.next().as_ref(), Some(&v[4]));
/// assert_eq!(viter.next().as_ref(), Some(&v[5]));
/// assert_eq!(viter.next(), None);
/// assert_eq!(viter.next(), None); // VertexIter is a FusedIterator.
/// ```
/// If a pair of adjacent edges share one vertex, the iterator run only one time at the shared vertex.
/// ```
/// use truck_topology::*;
/// let v = Vertex::news(&[(); 6]);
/// let wire = Wire::from(vec![
///     Edge::new(&v[0], &v[1], ()),
///     Edge::new(&v[2], &v[3], ()),
///     Edge::new(&v[3], &v[4], ()),
///     Edge::new(&v[4], &v[5], ()),
/// ]);
/// let mut viter = wire.vertex_iter();
/// assert_eq!(viter.next().as_ref(), Some(&v[0]));
/// assert_eq!(viter.next().as_ref(), Some(&v[1]));
/// assert_eq!(viter.next().as_ref(), Some(&v[2]));
/// assert_eq!(viter.next().as_ref(), Some(&v[3]));
/// assert_eq!(viter.next().as_ref(), Some(&v[4]));
/// assert_eq!(viter.next().as_ref(), Some(&v[5]));
/// assert_eq!(viter.next(), None);
/// ```
/// If the wire is cyclic, the iterator does not arrive at the last vertex.
/// ```
/// # use truck_topology::*;
/// let v = Vertex::news(&[(); 5]);
/// let wire = Wire::from(vec![
///     Edge::new(&v[0], &v[1], ()),
///     Edge::new(&v[1], &v[2], ()),
///     Edge::new(&v[3], &v[4], ()),
///     Edge::new(&v[4], &v[0], ()),
/// ]);
/// let mut viter = wire.vertex_iter();
/// assert_eq!(viter.next().as_ref(), Some(&v[0]));
/// assert_eq!(viter.next().as_ref(), Some(&v[1]));
/// assert_eq!(viter.next().as_ref(), Some(&v[2]));
/// assert_eq!(viter.next().as_ref(), Some(&v[3]));
/// assert_eq!(viter.next().as_ref(), Some(&v[4]));
/// assert_eq!(viter.next(), None);
/// ```
#[derive(Clone, Debug)]
pub struct VertexIter<'a, P, C> {
    edge_iter: Peekable<EdgeIter<'a, P, C>>,
    unconti_next: Option<Vertex<P>>,
    cyclic: bool,
}

impl<'a, P, C> Iterator for VertexIter<'a, P, C> {
    type Item = Vertex<P>;

    fn next(&mut self) -> Option<Vertex<P>> {
        if self.unconti_next.is_some() {
            let res = self.unconti_next.clone();
            self.unconti_next = None;
            res
        } else if let Some(edge) = self.edge_iter.next() {
            if let Some(next) = self.edge_iter.peek() {
                if edge.back() != next.front() {
                    self.unconti_next = Some(edge.back().clone());
                }
            } else if !self.cyclic {
                self.unconti_next = Some(edge.back().clone());
            }
            Some(edge.front().clone())
        } else {
            None
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let min_size = self.edge_iter.len();
        let max_size = self.edge_iter.len() * 2;
        (min_size, Some(max_size))
    }

    fn last(self) -> Option<Vertex<P>> {
        let closed = self.cyclic;
        self.edge_iter.last().map(|edge| {
            if closed {
                edge.front().clone()
            } else {
                edge.back().clone()
            }
        })
    }
}

impl<'a, P, C> std::iter::FusedIterator for VertexIter<'a, P, C> {}

impl<P, C> Extend<Edge<P, C>> for Wire<P, C> {
    fn extend<T: IntoIterator<Item = Edge<P, C>>>(&mut self, iter: T) {
        for edge in iter {
            self.push_back(edge);
        }
    }
}

impl<P, C> std::ops::Deref for Wire<P, C> {
    type Target = VecDeque<Edge<P, C>>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target { &self.edge_list }
}

impl<P, C> std::ops::DerefMut for Wire<P, C> {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target { &mut self.edge_list }
}

impl<P, C> Clone for Wire<P, C> {
    #[inline(always)]
    fn clone(&self) -> Self {
        Self {
            edge_list: self.edge_list.clone(),
        }
    }
}

impl<P, C> PartialEq for Wire<P, C> {
    #[inline(always)]
    fn eq(&self, other: &Self) -> bool { self.edge_list == other.edge_list }
}

impl<P, C> Eq for Wire<P, C> {}

impl<P, C> Default for Wire<P, C> {
    #[inline(always)]
    fn default() -> Self {
        Self {
            edge_list: Default::default(),
        }
    }
}

impl<'a, P: Debug, C: Debug> Debug for DebugDisplay<'a, Wire<P, C>, WireDisplayFormat> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self.format {
            WireDisplayFormat::EdgesListTuple { edge_format } => f
                .debug_tuple("Wire")
                .field(&Self {
                    entity: self.entity,
                    format: WireDisplayFormat::EdgesList { edge_format },
                })
                .finish(),
            WireDisplayFormat::EdgesList { edge_format } => f
                .debug_list()
                .entries(
                    self.entity
                        .edge_iter()
                        .map(|edge| edge.display(edge_format)),
                )
                .finish(),
            WireDisplayFormat::VerticesList { vertex_format } => {
                let vertices: Vec<_> = self.entity.vertex_iter().collect();
                f.debug_list()
                    .entries(vertices.iter().map(|vertex| vertex.display(vertex_format)))
                    .finish()
            }
        }
    }
}

impl<P: Send, C: Send> FromParallelIterator<Edge<P, C>> for Wire<P, C> {
    fn from_par_iter<I>(par_iter: I) -> Self
    where I: IntoParallelIterator<Item = Edge<P, C>> {
        Self::from(VecDeque::from_par_iter(par_iter))
    }
}

impl<P: Send, C: Send> IntoParallelIterator for Wire<P, C> {
    type Item = Edge<P, C>;
    type Iter = EdgeParallelIntoIter<P, C>;
    fn into_par_iter(self) -> Self::Iter { self.edge_list.into_par_iter() }
}

impl<'a, P: Send + 'a, C: Send + 'a> IntoParallelRefIterator<'a> for Wire<P, C> {
    type Item = &'a Edge<P, C>;
    type Iter = EdgeParallelIter<'a, P, C>;
    fn par_iter(&'a self) -> Self::Iter { self.edge_list.par_iter() }
}

impl<'a, P: Send + 'a, C: Send + 'a> IntoParallelRefMutIterator<'a> for Wire<P, C> {
    type Item = &'a mut Edge<P, C>;
    type Iter = EdgeParallelIterMut<'a, P, C>;
    fn par_iter_mut(&'a mut self) -> Self::Iter { self.edge_list.par_iter_mut() }
}

impl<P: Send, C: Send> ParallelExtend<Edge<P, C>> for Wire<P, C> {
    fn par_extend<I>(&mut self, par_iter: I)
    where I: IntoParallelIterator<Item = Edge<P, C>> {
        self.edge_list.par_extend(par_iter)
    }
}