1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
use crate::errors::Error;
use crate::*;
use thiserror::Error;

impl<P, C> Edge<P, C> {
    /// Generates the edge from `front` to `back`.  
    /// # Failures
    /// If `front == back`, then returns `Error::SameVertex`.
    /// ```
    /// # use truck_topology::*;
    /// # use truck_topology::errors::Error;
    /// let v = Vertex::news(&[(), ()]);
    /// assert!(Edge::try_new(&v[0], &v[1], ()).is_ok());
    /// assert_eq!(Edge::try_new(&v[0], &v[0], ()), Err(Error::SameVertex));
    /// ```
    #[inline(always)]
    pub fn try_new(front: &Vertex<P>, back: &Vertex<P>, curve: C) -> Result<Edge<P, C>> {
        if front == back {
            Err(Error::SameVertex)
        } else {
            Ok(Edge::new_unchecked(front, back, curve))
        }
    }
    /// Generates the edge from `front` to `back`.
    /// # Panic
    /// The condition `front == back` is not allowed.
    /// ```should_panic
    /// use truck_topology::*;
    /// let v = Vertex::new(());
    /// Edge::new(&v, &v, ()); // panic occurs
    /// ```
    #[inline(always)]
    pub fn new(front: &Vertex<P>, back: &Vertex<P>, curve: C) -> Edge<P, C> {
        Edge::try_new(front, back, curve).remove_try()
    }
    /// Generates the edge from `front` to `back`.
    /// # Remarks
    /// This method is prepared only for performance-critical development and is not recommended.  
    /// This method does NOT check the condition `front == back`.  
    /// The programmer must guarantee this condition before using this method.
    #[inline(always)]
    pub fn new_unchecked(front: &Vertex<P>, back: &Vertex<P>, curve: C) -> Edge<P, C> {
        Edge {
            vertices: (front.clone(), back.clone()),
            orientation: true,
            curve: Arc::new(Mutex::new(curve)),
        }
    }

    /// Generates the edge from `front` to `back`.
    /// # Remarks
    /// This method check the condition `front == back` in the debug mode.  
    /// The programmer must guarantee this condition before using this method.
    #[inline(always)]
    pub fn debug_new(front: &Vertex<P>, back: &Vertex<P>, curve: C) -> Edge<P, C> {
        match cfg!(debug_assertions) {
            true => Edge::new(front, back, curve),
            false => Edge::new_unchecked(front, back, curve),
        }
    }

    /// Returns the orientation of the curve.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(), ()]);
    /// let edge0 = Edge::new(&v[0], &v[1], ());
    /// let edge1 = edge0.inverse();
    /// assert!(edge0.orientation());
    /// assert!(!edge1.orientation());
    /// ```
    #[inline(always)]
    pub const fn orientation(&self) -> bool { self.orientation }

    /// Inverts the direction of edge.
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(), ()]);
    /// let edge = Edge::new(&v[0], &v[1], ());
    /// let mut inv_edge = edge.clone();
    /// inv_edge.invert();
    ///
    /// // Two edges are the same edge.
    /// edge.is_same(&inv_edge);
    ///
    /// // the front and back are exchanged.
    /// assert_eq!(edge.front(), inv_edge.back());
    /// assert_eq!(edge.back(), inv_edge.front());
    /// ```
    #[inline(always)]
    pub fn invert(&mut self) -> &mut Self {
        self.orientation = !self.orientation;
        self
    }

    /// Creates the inverse oriented edge.
    /// ```
    /// # use truck_topology::*;
    /// let v = Vertex::news(&[(), ()]);
    /// let edge = Edge::new(&v[0], &v[1], ());
    /// let inv_edge = edge.inverse();
    ///
    /// // Two edges are the same edge.
    /// assert!(edge.is_same(&inv_edge));
    ///
    /// // Two edges has the same id.
    /// assert_eq!(edge.id(), inv_edge.id());
    ///
    /// // the front and back are exchanged.
    /// assert_eq!(edge.front(), inv_edge.back());
    /// assert_eq!(edge.back(), inv_edge.front());
    /// ```
    #[inline(always)]
    pub fn inverse(&self) -> Edge<P, C> {
        Edge {
            vertices: self.vertices.clone(),
            orientation: !self.orientation,
            curve: Arc::clone(&self.curve),
        }
    }

    /// Returns the front vertex
    /// ```
    /// # use truck_topology::*;
    /// let v = Vertex::news(&[(), ()]);
    /// let edge = Edge::new(&v[0], &v[1], ());
    /// assert_eq!(edge.front(), &v[0]);
    /// ```
    #[inline(always)]
    pub fn front(&self) -> &Vertex<P> {
        match self.orientation {
            true => &self.vertices.0,
            false => &self.vertices.1,
        }
    }

    /// Returns the back vertex
    /// ```
    /// # use truck_topology::*;
    /// let v = Vertex::news(&[(), ()]);
    /// let edge = Edge::new(&v[0], &v[1], ());
    /// assert_eq!(edge.back(), &v[1]);
    /// ```
    #[inline(always)]
    pub fn back(&self) -> &Vertex<P> {
        match self.orientation {
            true => &self.vertices.1,
            false => &self.vertices.0,
        }
    }

    /// Returns the vertices at both ends.
    /// ```
    /// # use truck_topology::*;
    /// let v = Vertex::news(&[(), ()]);
    /// let edge = Edge::new(&v[0], &v[1], ());
    /// assert_eq!(edge.ends(), (&v[0], &v[1]));
    /// ```
    #[inline(always)]
    pub fn ends(&self) -> (&Vertex<P>, &Vertex<P>) {
        match self.orientation {
            true => (&self.vertices.0, &self.vertices.1),
            false => (&self.vertices.1, &self.vertices.0),
        }
    }

    /// Returns the front vertex which is generated by constructor
    /// ```
    /// # use truck_topology::*;
    /// let v = Vertex::news(&[(), ()]);
    /// let edge = Edge::new(&v[0], &v[1], ()).inverse();
    /// assert_eq!(edge.front(), &v[1]);
    /// assert_eq!(edge.absolute_front(), &v[0]);
    /// ```
    #[inline(always)]
    pub const fn absolute_front(&self) -> &Vertex<P> { &self.vertices.0 }
    /// Returns the back vertex which is generated by constructor
    /// ```
    /// # use truck_topology::*;
    /// let v = Vertex::news(&[(), ()]);
    /// let edge = Edge::new(&v[0], &v[1], ()).inverse();
    /// assert_eq!(edge.back(), &v[0]);
    /// assert_eq!(edge.absolute_back(), &v[1]);
    /// ```
    #[inline(always)]
    pub const fn absolute_back(&self) -> &Vertex<P> { &self.vertices.1 }

    /// Returns the vertices at both absolute ends.
    /// ```
    /// # use truck_topology::*;
    /// let v = Vertex::news(&[(), ()]);
    /// let mut edge = Edge::new(&v[0], &v[1], ());
    /// edge.invert();
    /// assert_eq!(edge.ends(), (&v[1], &v[0]));
    /// assert_eq!(edge.absolute_ends(), (&v[0], &v[1]));
    /// ```
    #[inline(always)]
    pub const fn absolute_ends(&self) -> (&Vertex<P>, &Vertex<P>) {
        (&self.vertices.0, &self.vertices.1)
    }

    /// Returns a clone of the edge without inversion.
    /// # Examples
    /// ```
    /// use truck_topology::{Vertex, Edge};
    /// let v = Vertex::news(&[(), ()]);
    /// let edge0 = Edge::new(&v[0], &v[1], ());
    /// let edge1 = edge0.inverse();
    /// let edge2 = edge1.absolute_clone();
    /// assert_eq!(edge0, edge2);
    /// assert_ne!(edge1, edge2);
    /// assert!(edge1.is_same(&edge2));
    /// ```
    #[inline(always)]
    pub fn absolute_clone(&self) -> Self {
        Self {
            vertices: self.vertices.clone(),
            curve: Arc::clone(&self.curve),
            orientation: true,
        }
    }

    /// Returns whether two edges are the same. Returns `true` even if the orientaions are different.
    /// ```
    /// use truck_topology::{Vertex, Edge};
    /// let v = Vertex::news(&[(), ()]);
    /// let edge0 = Edge::new(&v[0], &v[1], ());
    /// let edge1 = Edge::new(&v[0], &v[1], ());
    /// let edge2 = edge0.clone();
    /// let edge3 = edge0.inverse();
    /// assert!(!edge0.is_same(&edge1)); // edges whose ids are different are not the same.
    /// assert!(edge0.is_same(&edge2)); // The cloned edge is the same edge.
    /// assert!(edge0.is_same(&edge3)); // The inversed edge is the "same" edge
    /// ```
    #[inline(always)]
    pub fn is_same(&self, other: &Edge<P, C>) -> bool { self.id() == other.id() }

    /// Returns the clone of the curve.
    /// # Remarks
    /// This method returns absolute curve i.e. does not consider the orientation of curve.
    /// If you want to get a curve compatible with edge's orientation, use `Edge::oriented_curve`.
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[0, 1]);
    /// let mut edge = Edge::new(&v[0], &v[1], (0, 1));
    /// edge.invert();
    ///
    /// // absolute curve
    /// assert_eq!(edge.get_curve(), (0, 1));
    /// // oriented curve
    /// assert_eq!(edge.oriented_curve(), (1, 0));
    /// ```
    #[inline(always)]
    pub fn get_curve(&self) -> C
    where C: Clone {
        self.curve.lock().unwrap().clone()
    }

    /// Set the curve.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(), ()]);
    /// let edge0 = Edge::new(&v[0], &v[1], 0);
    /// let edge1 = edge0.clone();
    ///
    /// // Two edges have the same content.
    /// assert_eq!(edge0.get_curve(), 0);
    /// assert_eq!(edge1.get_curve(), 0);
    ///
    /// // set the content
    /// edge0.set_curve(1);
    ///
    /// // The contents of two edges are synchronized.
    /// assert_eq!(edge0.get_curve(), 1);
    /// assert_eq!(edge1.get_curve(), 1);
    /// ```
    #[inline(always)]
    pub fn set_curve(&self, curve: C) { *self.curve.lock().unwrap() = curve; }

    /// Returns the id that does not depend on the direction of the edge.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(), ()]);
    /// let edge0 = Edge::new(&v[0], &v[1], ());
    /// let edge1 = edge0.inverse();
    /// assert_ne!(edge0, edge1);
    /// assert_eq!(edge0.id(), edge1.id());
    /// ```
    #[inline(always)]
    pub fn id(&self) -> EdgeID<C> { ID::new(Arc::as_ptr(&self.curve)) }

    /// Returns how many same edges.
    ///
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// // Create one edge
    /// let v = Vertex::news(&[(), ()]);
    /// let e0 = Edge::new(&v[0], &v[1], ());
    /// assert_eq!(e0.count(), 1);
    /// // Create another edge, independent from e0
    /// let e1 = Edge::new(&v[0], &v[1], ());
    /// assert_eq!(e0.count(), 1);
    /// // Clone e0, count will be 2
    /// let e2 = e0.clone();
    /// assert_eq!(e0.count(), 2);
    /// assert_eq!(e2.count(), 2);
    /// // drop e2, count will be 1
    /// drop(e2);
    /// assert_eq!(e0.count(), 1);
    /// ```
    #[inline(always)]
    pub fn count(&self) -> usize { Arc::strong_count(&self.curve) }

    /// Returns the cloned curve in edge.
    /// If edge is inverted, then the returned curve is also inverted.
    #[inline(always)]
    pub fn oriented_curve(&self) -> C
    where C: Clone + Invertible {
        match self.orientation {
            true => self.curve.lock().unwrap().clone(),
            false => self.curve.lock().unwrap().inverse(),
        }
    }

    /// Returns a new edge whose curve is mapped by `curve_mapping` and
    /// whose end points are mapped by `point_mapping`.
    /// # Remarks
    /// Accessing geometry elements directly in the closure will result in a deadlock.
    /// So, this method does not appear to the document.
    #[doc(hidden)]
    #[inline(always)]
    pub fn try_mapped<Q, D>(
        &self,
        mut point_mapping: impl FnMut(&P) -> Option<Q>,
        mut curve_mapping: impl FnMut(&C) -> Option<D>,
    ) -> Option<Edge<Q, D>> {
        let v0 = self.absolute_front().try_mapped(&mut point_mapping)?;
        let v1 = self.absolute_back().try_mapped(&mut point_mapping)?;
        let curve = curve_mapping(&*self.curve.lock().unwrap())?;
        let mut edge = Edge::debug_new(&v0, &v1, curve);
        if !self.orientation() {
            edge.invert();
        }
        Some(edge)
    }

    /// Returns a new edge whose curve is mapped by `curve_mapping` and
    /// whose end points are mapped by `point_mapping`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v0 = Vertex::new(0);
    /// let v1 = Vertex::new(1);
    /// let edge0 = Edge::new(&v0, &v1, 2);
    /// let edge1 = edge0.mapped(
    ///     &move |i: &usize| *i as f64 + 0.5,
    ///     &move |j: &usize| *j as f64 + 0.5,
    /// );
    ///
    /// assert_eq!(edge1.front().get_point(), 0.5);
    /// assert_eq!(edge1.back().get_point(), 1.5);
    /// assert_eq!(edge1.get_curve(), 2.5);
    /// ```
    /// # Remarks
    /// Accessing geometry elements directly in the closure will result in a deadlock.
    /// So, this method does not appear to the document.
    #[doc(hidden)]
    #[inline(always)]
    pub fn mapped<Q, D>(
        &self,
        mut point_mapping: impl FnMut(&P) -> Q,
        mut curve_mapping: impl FnMut(&C) -> D,
    ) -> Edge<Q, D> {
        let v0 = self.absolute_front().mapped(&mut point_mapping);
        let v1 = self.absolute_back().mapped(&mut point_mapping);
        let curve = curve_mapping(&*self.curve.lock().unwrap());
        let mut edge = Edge::debug_new(&v0, &v1, curve);
        if edge.orientation() != self.orientation() {
            edge.invert();
        }
        edge
    }

    /// Returns the consistence of the geometry of end vertices
    /// and the geometry of edge.
    #[inline(always)]
    pub fn is_geometric_consistent(&self) -> bool
    where
        P: Tolerance,
        C: BoundedCurve<Point = P>, {
        let curve = self.curve.lock().unwrap();
        let geom_front = curve.front();
        let geom_back = curve.back();
        let top_front = self.absolute_front().point.lock().unwrap();
        let top_back = self.absolute_back().point.lock().unwrap();
        geom_front.near(&*top_front) && geom_back.near(&*top_back)
    }

    /// Cuts the edge at `vertex`.
    /// # Failure
    /// Returns `None` if:
    /// - cannot find the parameter `t` such that `edge.get_curve().subs(t) == vertex.get_point()`, or
    /// - the found parameter is not in the parameter range without end points.
    pub fn cut(&self, vertex: &Vertex<P>) -> Option<(Self, Self)>
    where
        P: Clone,
        C: Cut<Point = P> + SearchParameter<D1, Point = P>, {
        let mut curve0 = self.get_curve();
        let t = curve0.search_parameter(vertex.get_point(), None, SEARCH_PARAMETER_TRIALS)?;
        let (t0, t1) = curve0.parameter_range();
        if t < t0 + TOLERANCE || t1 - TOLERANCE < t {
            return None;
        }
        let curve1 = curve0.cut(t);
        let edge0 = Edge {
            vertices: (self.absolute_front().clone(), vertex.clone()),
            orientation: self.orientation,
            curve: Arc::new(Mutex::new(curve0)),
        };
        let edge1 = Edge {
            vertices: (vertex.clone(), self.absolute_back().clone()),
            orientation: self.orientation,
            curve: Arc::new(Mutex::new(curve1)),
        };
        if self.orientation {
            Some((edge0, edge1))
        } else {
            Some((edge1, edge0))
        }
    }

    /// Cuts the edge at `vertex` with parameter `t`.
    /// # Failure
    /// Returns `None` if `!edge.get_curve().subs(t).near(&vertex.get_point())`.
    pub fn cut_with_parameter(&self, vertex: &Vertex<P>, t: f64) -> Option<(Self, Self)>
    where
        P: Clone + Tolerance,
        C: Cut<Point = P>, {
        let mut curve0 = self.get_curve();
        if !curve0.subs(t).near(&vertex.get_point()) {
            return None;
        }
        let (t0, t1) = curve0.parameter_range();
        if t < t0 + TOLERANCE || t1 - TOLERANCE < t {
            return None;
        }
        let curve1 = curve0.cut(t);
        let edge0 = Edge {
            vertices: (self.absolute_front().clone(), vertex.clone()),
            orientation: self.orientation,
            curve: Arc::new(Mutex::new(curve0)),
        };
        let edge1 = Edge {
            vertices: (vertex.clone(), self.absolute_back().clone()),
            orientation: self.orientation,
            curve: Arc::new(Mutex::new(curve1)),
        };
        if self.orientation {
            Some((edge0, edge1))
        } else {
            Some((edge1, edge0))
        }
    }

    /// Concats two edges.
    pub fn concat(&self, rhs: &Self) -> std::result::Result<Self, ConcatError<P>>
    where
        P: Debug,
        C: Concat<C, Point = P, Output = C> + Invertible + ParameterTransform, {
        if self.back() != rhs.front() {
            return Err(ConcatError::DisconnectedVertex(
                self.back().clone(),
                rhs.front().clone(),
            ));
        }
        if self.front() == rhs.back() {
            return Err(ConcatError::SameVertex(self.front().clone()));
        }
        let curve0 = self.oriented_curve();
        let mut curve1 = rhs.oriented_curve();
        let t0 = curve0.parameter_range().1;
        let t1 = curve1.parameter_range().0;
        curve1.parameter_transform(1.0, t0 - t1);
        let curve = curve0.try_concat(&curve1)?;
        Ok(Edge::debug_new(self.front(), rhs.back(), curve))
    }

    /// Create display struct for debugging the edge.
    ///
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use EdgeDisplayFormat as EDF;
    ///
    /// let vertex_format = VertexDisplayFormat::AsPoint;
    /// let edge = Edge::new(&Vertex::new(0), &Vertex::new(1), 2);
    ///
    /// assert_eq!(
    ///     format!("{:?}", edge.display(EDF::Full { vertex_format })),
    ///     format!("Edge {{ id: {:?}, vertices: (0, 1), entity: 2 }}", edge.id()),
    /// );
    /// assert_eq!(
    ///     format!("{:?}", edge.display(EDF::VerticesTupleAndID { vertex_format })),
    ///     format!("Edge {{ id: {:?}, vertices: (0, 1) }}", edge.id()),
    /// );
    /// assert_eq!(
    ///     &format!("{:?}", edge.display(EDF::VerticesTupleAndCurve { vertex_format })),
    ///     "Edge { vertices: (0, 1), entity: 2 }",
    /// );
    /// assert_eq!(
    ///     &format!("{:?}", edge.display(EDF::VerticesTupleStruct { vertex_format })),
    ///     "Edge(0, 1)",
    /// );
    /// assert_eq!(
    ///     &format!("{:?}", edge.display(EDF::VerticesTuple { vertex_format })),
    ///     "(0, 1)",
    /// );
    /// assert_eq!(
    ///     &format!("{:?}", edge.display(EDF::AsCurve)),
    ///     "2",
    /// );
    /// ```
    #[inline(always)]
    pub fn display(&self, format: EdgeDisplayFormat) -> DebugDisplay<'_, Self, EdgeDisplayFormat> {
        DebugDisplay {
            entity: self,
            format,
        }
    }
}

/// Error for concat
#[derive(Clone, Debug, Error)]
pub enum ConcatError<P: Debug> {
    /// Failed to concat edges since the end point of the first curve is different from the start point of the second curve.
    #[error("The end point {0:?} of the first curve is different from the start point {1:?} of the second curve.")]
    DisconnectedVertex(Vertex<P>, Vertex<P>),
    #[error("The end vertices are the same vertex {0:?}.")]
    SameVertex(Vertex<P>),
    /// From geometric error.
    #[error("{0}")]
    FromGeometry(truck_geotrait::ConcatError<P>),
}

impl<P: Debug> From<truck_geotrait::ConcatError<P>> for ConcatError<P> {
    fn from(err: truck_geotrait::ConcatError<P>) -> ConcatError<P> {
        ConcatError::FromGeometry(err)
    }
}

impl<P, C> Clone for Edge<P, C> {
    #[inline(always)]
    fn clone(&self) -> Edge<P, C> {
        Edge {
            vertices: self.vertices.clone(),
            orientation: self.orientation,
            curve: Arc::clone(&self.curve),
        }
    }
}

impl<P, C> PartialEq for Edge<P, C> {
    #[inline(always)]
    fn eq(&self, other: &Self) -> bool {
        std::ptr::eq(Arc::as_ptr(&self.curve), Arc::as_ptr(&other.curve))
            && self.orientation == other.orientation
    }
}

impl<P, C> Eq for Edge<P, C> {}

impl<P, C> Hash for Edge<P, C> {
    #[inline(always)]
    fn hash<H: Hasher>(&self, state: &mut H) {
        std::ptr::hash(Arc::as_ptr(&self.curve), state);
        self.orientation.hash(state);
    }
}

impl<'a, P: Debug, C: Debug> Debug for DebugDisplay<'a, Edge<P, C>, EdgeDisplayFormat> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self.format {
            EdgeDisplayFormat::Full { vertex_format } => f
                .debug_struct("Edge")
                .field("id", &Arc::as_ptr(&self.entity.curve))
                .field(
                    "vertices",
                    &(
                        self.entity.front().display(vertex_format),
                        self.entity.back().display(vertex_format),
                    ),
                )
                .field("entity", &MutexFmt(&self.entity.curve))
                .finish(),
            EdgeDisplayFormat::VerticesTupleAndID { vertex_format } => f
                .debug_struct("Edge")
                .field("id", &self.entity.id())
                .field(
                    "vertices",
                    &(
                        self.entity.front().display(vertex_format),
                        self.entity.back().display(vertex_format),
                    ),
                )
                .finish(),
            EdgeDisplayFormat::VerticesTupleAndCurve { vertex_format } => f
                .debug_struct("Edge")
                .field(
                    "vertices",
                    &(
                        self.entity.front().display(vertex_format),
                        self.entity.back().display(vertex_format),
                    ),
                )
                .field("entity", &MutexFmt(&self.entity.curve))
                .finish(),
            EdgeDisplayFormat::VerticesTupleStruct { vertex_format } => f
                .debug_tuple("Edge")
                .field(&self.entity.front().display(vertex_format))
                .field(&self.entity.back().display(vertex_format))
                .finish(),
            EdgeDisplayFormat::VerticesTuple { vertex_format } => f.write_fmt(format_args!(
                "({:?}, {:?})",
                self.entity.front().display(vertex_format),
                self.entity.back().display(vertex_format),
            )),
            EdgeDisplayFormat::AsCurve => {
                f.write_fmt(format_args!("{:?}", &MutexFmt(&self.entity.curve)))
            }
        }
    }
}