1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use crate::*;
use std::ops::{Deref, DerefMut};
use truck_base::cgmath64::control_point::ControlPoint;

impl<P> Deref for PolylineCurve<P> {
    type Target = Vec<P>;
    fn deref(&self) -> &Self::Target { &self.0 }
}

impl<P> DerefMut for PolylineCurve<P> {
    fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 }
}

impl<P> From<Vec<P>> for PolylineCurve<P> {
    fn from(v: Vec<P>) -> Self { Self(v) }
}

impl<P> From<PolylineCurve<P>> for Vec<P> {
    fn from(v: PolylineCurve<P>) -> Self { v.0 }
}

impl<P> FromIterator<P> for PolylineCurve<P> {
    fn from_iter<I: IntoIterator<Item = P>>(iter: I) -> Self { Self(Vec::from_iter(iter)) }
}

impl<P: ControlPoint<f64>> ParametricCurve for PolylineCurve<P> {
    type Point = P;
    type Vector = P::Diff;
    #[inline(always)]
    fn subs(&self, t: f64) -> P {
        if self.is_empty() {
            P::origin()
        } else if t <= 0.0 {
            self[0]
        } else if t + 1.0 >= self.len() as f64 {
            self[self.len() - 1]
        } else {
            let n = t as usize;
            let t = t - n as f64;
            self[n] + (self[n + 1] - self[n]) * t
        }
    }
    #[inline(always)]
    fn der(&self, t: f64) -> P::Diff {
        if t < 0.0 || (self.len() as f64) < t + 1.0 {
            P::Diff::zero()
        } else {
            let n = t as usize;
            if n + 1 == self.len() {
                self[n] - self[n - 1]
            } else {
                self[n + 1] - self[n]
            }
        }
    }
    #[inline(always)]
    fn der2(&self, _: f64) -> P::Diff { P::Diff::zero() }
}

impl<P: ControlPoint<f64>> BoundedCurve for PolylineCurve<P> {
    #[inline(always)]
    fn parameter_range(&self) -> (f64, f64) { (0.0, self.len() as f64 - 1.0) }
}

impl<P: Clone> Invertible for PolylineCurve<P> {
    #[inline(always)]
    fn invert(&mut self) { self.reverse(); }
    #[inline(always)]
    fn inverse(&self) -> Self { Self(self.iter().rev().cloned().collect()) }
}

impl<P: ControlPoint<f64>> Cut for PolylineCurve<P> {
    fn cut(&mut self, t: f64) -> Self {
        if t < 0.0 {
            PolylineCurve(Vec::new())
        } else if t + 1.0 > self.len() as f64 {
            let mut v = Vec::new();
            v.append(&mut self.0);
            PolylineCurve(v)
        } else {
            let n = t as usize;
            if t.near(&(n as f64)) {
                let mut v = Vec::new();
                v.extend(&self[n..]);
                self.truncate(n + 1);
                PolylineCurve(v)
            } else {
                let p = self.subs(t);
                let mut v = vec![p];
                v.extend(&self[(n + 1)..]);
                self.truncate(n + 1);
                self.push(p);
                PolylineCurve(v)
            }
        }
    }
}

impl<P> SearchParameter<D1> for PolylineCurve<P>
where
    P: ControlPoint<f64>,
    P::Diff: InnerSpace<Scalar = f64> + Tolerance,
{
    type Point = P;
    fn search_parameter<H: Into<SPHint1D>>(&self, point: P, _: H, _: usize) -> Option<f64> {
        for (i, p) in self.0.windows(2).enumerate() {
            let a = point - p[0];
            let b = p[1] - p[0];
            let t = f64::clamp(a.dot(b) / b.dot(b), 0.0, 1.0);
            let h = a - b * t;
            if h.so_small() {
                return Some(t + i as f64);
            }
        }
        None
    }
}

impl<P> SearchNearestParameter<D1> for PolylineCurve<P>
where
    P: ControlPoint<f64>,
    P::Diff: InnerSpace<Scalar = f64>,
{
    type Point = P;
    fn search_nearest_parameter<H: Into<SPHint1D>>(&self, point: P, _: H, _: usize) -> Option<f64> {
        let (mut t0, mut dist2) = (0.0, f64::INFINITY);
        for (i, p) in self.0.windows(2).enumerate() {
            let a = point - p[0];
            let b = p[1] - p[0];
            let t = f64::clamp(a.dot(b) / b.dot(b), 0.0, 1.0);
            let h = a - b * t;
            if h.dot(h) < dist2 {
                t0 = t + i as f64;
                dist2 = h.dot(h);
            }
        }
        Some(t0)
    }
}

impl<P: ControlPoint<f64>> ParameterDivision1D for PolylineCurve<P> {
    type Point = P;
    #[inline(always)]
    fn parameter_division(&self, range: (f64, f64), _: f64) -> (Vec<f64>, Vec<P>) {
        let r0 = range.0 as isize + 1;
        let r1 = range.1 as isize;
        let mut res = (vec![range.0], vec![self.subs(range.0)]);
        res.0.extend((r0..=r1).map(|i| i as f64));
        res.1.extend((r0..=r1).map(|i| self[i as usize]));
        res.0.push(range.1);
        res.1.push(self.subs(range.1));
        res
    }
}

impl<P, T> Transformed<T> for PolylineCurve<P>
where
    P: EuclideanSpace,
    T: Transform<P>,
{
    fn transform_by(&mut self, trans: T) {
        self.0
            .iter_mut()
            .for_each(|p| *p = trans.transform_point(*p))
    }
}

#[test]
fn polyline_test() {
    let vec = vec![
        Point3::new(0.0, 0.0, 0.0),
        Point3::new(1.0, 0.0, 0.0),
        Point3::new(0.0, 1.0, 0.0),
        Point3::new(0.0, 0.0, 1.0),
        Point3::new(0.0, 1.0, 1.0),
        Point3::new(1.0, 0.0, 1.0),
        Point3::new(1.0, 1.0, 0.0),
        Point3::new(1.0, 1.0, 1.0),
    ];
    let polyline = PolylineCurve(vec);
    truck_base::assert_near!(polyline.subs(2.5), Point3::new(0.0, 0.5, 0.5));

    let mut part0 = polyline.clone();
    let part1 = part0.cut(2.5);
    assert_eq!(part0.len(), 4);
    assert_eq!(part1.len(), 6);
    truck_base::assert_near!(part0.subs(2.5), Point3::new(0.0, 0.75, 0.25));
    truck_base::assert_near!(part1.subs(0.5), Point3::new(0.0, 0.25, 0.75));
    let mut part0 = polyline.clone();
    let part1 = part0.cut(4.0);
    assert_eq!(part0.len(), 5);
    assert_eq!(part1.len(), 4);
    truck_base::assert_near!(part0.subs(2.5), Point3::new(0.0, 0.5, 0.5));
    truck_base::assert_near!(part1.subs(0.5), Point3::new(0.5, 0.5, 1.0));

    let pt = polyline.subs(2.13);
    let t = polyline.search_parameter(pt, None, 1).unwrap();
    truck_base::assert_near!(t, 2.13);

    let pt = Point3::new(2.0, 0.0, 0.0);
    assert!(polyline.search_parameter(pt, None, 1).is_none());
    truck_base::assert_near!(polyline.search_nearest_parameter(pt, None, 1).unwrap(), 1.0);
    let pt = Point3::new(0.5, 0.5, 0.51);
    assert!(polyline.search_parameter(pt, None, 1).is_none());
    let t = polyline.search_nearest_parameter(pt, None, 1).unwrap();
    assert!(polyline.der(t).dot(pt - polyline.subs(t)).so_small());

    let div = polyline.parameter_division((1.5, 6.2), 0.0);
    assert_eq!(div.0, vec![1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 6.2]);
    assert_eq!(div.0.len(), div.1.len());
    truck_base::assert_near!(div.1[0], Point3::new(0.5, 0.5, 0.0));
    truck_base::assert_near!(div.1[1], Point3::new(0.0, 1.0, 0.0));
    truck_base::assert_near!(div.1[2], Point3::new(0.0, 0.0, 1.0));
    truck_base::assert_near!(div.1[3], Point3::new(0.0, 1.0, 1.0));
    truck_base::assert_near!(div.1[4], Point3::new(1.0, 0.0, 1.0));
    truck_base::assert_near!(div.1[5], Point3::new(1.0, 1.0, 0.0));
    truck_base::assert_near!(div.1[6], Point3::new(1.0, 1.0, 0.2));
}