1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
use crate::*;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::{LockResult, MutexGuard};

static MAXID: AtomicUsize = AtomicUsize::new(0);

impl RenderID {
    /// Generate the unique `RenderID`.
    #[inline(always)]
    pub fn gen() -> Self { RenderID(MAXID.fetch_add(1, Ordering::SeqCst)) }
}

impl DeviceHandler {
    /// constructor
    #[inline(always)]
    pub fn new(
        device: Arc<Device>,
        queue: Arc<Queue>,
        sc_desc: Arc<Mutex<SwapChainDescriptor>>,
    ) -> DeviceHandler {
        DeviceHandler {
            device,
            queue,
            sc_desc,
        }
    }
    /// Returns the reference of the device.
    #[inline(always)]
    pub fn device(&self) -> &Arc<Device> { &self.device }
    /// Returns the reference of the queue.
    #[inline(always)]
    pub fn queue(&self) -> &Arc<Queue> { &self.queue }
    /// Returns the copy of swap chain descriptor.
    #[inline(always)]
    pub fn sc_desc(&self) -> SwapChainDescriptor { self.sc_desc.lock().unwrap().clone() }
    /// Locks the swap chain descriptor.
    #[inline(always)]
    pub fn lock_sc_desc(&self) -> LockResult<MutexGuard<SwapChainDescriptor>> {
        self.sc_desc.lock()
    }
}

impl Default for SceneDescriptor {
    #[inline(always)]
    fn default() -> SceneDescriptor {
        SceneDescriptor {
            background: Color::BLACK,
            camera: Camera::default(),
            lights: vec![Light::default()],
            sample_count: 1,
        }
    }
}

impl SceneDescriptor {
    /// Creates a `UNIFORM` buffer of camera.
    ///
    /// The bind group provides [`Scene`] holds this uniform buffer.
    ///
    /// # Shader Example
    /// ```glsl
    /// layout(set = 0, binding = 0) uniform Camera {
    ///     mat4 camera_matrix;     // the camera matrix
    ///     mat4 camera_projection; // the projection into the normalized view volume
    /// };
    /// ```
    #[inline(always)]
    pub fn camera_buffer(&self, handler: &DeviceHandler) -> BufferHandler {
        let sc_desc = handler.sc_desc();
        let as_rat = sc_desc.width as f64 / sc_desc.height as f64;
        self.camera.buffer(as_rat, handler.device())
    }

    /// Creates a `STORAGE` buffer of all lights.
    ///
    /// The bind group provides [`Scene`] holds this uniform buffer.
    ///
    /// # Shader Example
    /// ```glsl
    /// struct Light {
    ///     vec4 position;      // the position of light, position.w == 1.0
    ///     vec4 color;         // the color of light, color.w == 1.0
    ///     uvec4 light_type;   // Point => uvec4(0, 0, 0, 0), Uniform => uvec4(1, 0, 0, 0)
    /// };
    ///
    /// layout(set = 0, binding = 1) buffer Lights {
    ///     Light lights[];
    /// };
    /// ```
    #[inline(always)]
    pub fn lights_buffer(&self, device: &Device) -> BufferHandler {
        let light_vec: Vec<_> = self.lights.iter().map(Light::light_info).collect();
        BufferHandler::from_slice(&light_vec, device, BufferUsage::STORAGE)
    }
}

impl Scene {
    #[inline(always)]
    fn camera_bgl_entry() -> PreBindGroupLayoutEntry {
        PreBindGroupLayoutEntry {
            visibility: ShaderStage::VERTEX | ShaderStage::FRAGMENT,
            ty: BindingType::UniformBuffer {
                dynamic: false,
                min_binding_size: None,
            },
            count: None,
        }
    }

    #[inline(always)]
    fn lights_bgl_entry() -> PreBindGroupLayoutEntry {
        PreBindGroupLayoutEntry {
            visibility: ShaderStage::VERTEX | ShaderStage::FRAGMENT,
            ty: BindingType::StorageBuffer {
                dynamic: false,
                min_binding_size: None,
                readonly: true,
            },
            count: None,
        }
    }

    #[inline(always)]
    fn scene_bgl_entry() -> PreBindGroupLayoutEntry {
        PreBindGroupLayoutEntry {
            visibility: ShaderStage::VERTEX | ShaderStage::FRAGMENT,
            ty: BindingType::UniformBuffer {
                dynamic: false,
                min_binding_size: None,
            },
            count: None,
        }
    }

    #[inline(always)]
    fn init_scene_bind_group_layout(device: &Device) -> BindGroupLayout {
        bind_group_util::create_bind_group_layout(
            device,
            &[
                Self::camera_bgl_entry(),
                Self::lights_bgl_entry(),
                Self::scene_bgl_entry(),
            ],
        )
    }

    #[inline(always)]
    fn sampling_buffer(
        device: &Device,
        sc_desc: &SwapChainDescriptor,
        sample_count: u32,
    ) -> Texture {
        device.create_texture(&TextureDescriptor {
            size: Extent3d {
                width: sc_desc.width,
                height: sc_desc.height,
                depth: 1,
            },
            mip_level_count: 1,
            sample_count,
            dimension: TextureDimension::D2,
            format: sc_desc.format,
            usage: TextureUsage::OUTPUT_ATTACHMENT,
            label: None,
        })
    }

    #[inline(always)]
    fn depth_texture(device: &Device, sc_desc: &SwapChainDescriptor, sample_count: u32) -> Texture {
        device.create_texture(&TextureDescriptor {
            size: Extent3d {
                width: sc_desc.width,
                height: sc_desc.height,
                depth: 1,
            },
            mip_level_count: 1,
            sample_count,
            dimension: TextureDimension::D2,
            format: TextureFormat::Depth32Float,
            usage: TextureUsage::OUTPUT_ATTACHMENT,
            label: None,
        })
    }

    #[inline(always)]
    fn update_textures(&mut self) {
        let sc_desc = self.sc_desc();
        let sample_count = self.scene_desc.sample_count;
        if self.depth_texture_size != (sc_desc.width, sc_desc.height)
            || sample_count != self.previous_sample_count
        {
            self.depth_texture_size = (sc_desc.width, sc_desc.height);
            self.previous_sample_count = sample_count;
            self.foward_depth = Self::depth_texture(self.device(), &sc_desc, sample_count);
            self.sampling_buffer = Self::sampling_buffer(self.device(), &sc_desc, sample_count);
        }
    }

    /// constructor
    // About `scene_desc`, entity is better than reference for the performance.
    // This is referece because only for as wgpu is.
    #[inline(always)]
    pub fn new(device_handler: DeviceHandler, scene_desc: &SceneDescriptor) -> Scene {
        let (device, sc_desc) = (device_handler.device(), device_handler.sc_desc());
        let bind_group_layout = Self::init_scene_bind_group_layout(device);
        Scene {
            objects: Default::default(),
            bind_group_layout,
            foward_depth: Self::depth_texture(device, &sc_desc, scene_desc.sample_count),
            depth_texture_size: (sc_desc.width, sc_desc.height),
            sampling_buffer: Self::sampling_buffer(device, &sc_desc, scene_desc.sample_count),
            previous_sample_count: scene_desc.sample_count,
            clock: std::time::Instant::now(),
            scene_desc: scene_desc.clone(),
            device_handler,
        }
    }

    /// Returns the reference of its own `DeviceHandler`.
    #[inline(always)]
    pub fn device_handler(&self) -> &DeviceHandler { &self.device_handler }

    /// Returns the reference of the device.
    #[inline(always)]
    pub fn device(&self) -> &Arc<Device> { &self.device_handler.device }

    /// Returns the reference of the queue.
    #[inline(always)]
    pub fn queue(&self) -> &Arc<Queue> { &self.device_handler.queue }

    /// Returns the copy of swap chain descriptor.
    #[inline(always)]
    pub fn sc_desc(&self) -> SwapChainDescriptor { self.device_handler.sc_desc() }
    /// Locks the swap chain descriptor.
    #[inline(always)]
    pub fn lock_sc_desc(&self) -> LockResult<MutexGuard<SwapChainDescriptor>> {
        self.device_handler.lock_sc_desc()
    }
    /// Returns the elapsed time since the scene was created.
    #[inline(always)]
    pub fn elapsed(&self) -> std::time::Duration { self.clock.elapsed() }

    /// Returns the reference of the descriptor.
    #[inline(always)]
    pub fn descriptor(&self) -> &SceneDescriptor { &self.scene_desc }

    /// Returns the mutable reference of the descriptor.
    #[inline(always)]
    pub fn descriptor_mut(&mut self) -> &mut SceneDescriptor { &mut self.scene_desc }
    /// Returns the bind group layout in the scene.
    #[inline(always)]
    pub fn bind_group_layout(&self) -> &BindGroupLayout { &self.bind_group_layout }

    /// Creates a `UNIFORM` buffer of the camera.
    ///
    /// The bind group provides [`Scene`] holds this uniform buffer.
    ///
    /// # Shader Example
    /// ```glsl
    /// layout(set = 0, binding = 0) uniform Camera {
    ///     mat4 camera_matrix;     // the camera matrix
    ///     mat4 camera_projection; // the projection into the normalized view volume
    /// };
    /// ```
    #[inline(always)]
    pub fn camera_buffer(&self) -> BufferHandler {
        self.scene_desc.camera_buffer(self.device_handler())
    }

    /// Creates a `STORAGE` buffer of all lights.
    ///
    /// The bind group provides [`Scene`] holds this uniform buffer.
    ///
    /// # Shader Example
    /// ```glsl
    /// struct Light {
    ///     vec4 position;      // the position of light, position.w == 1.0
    ///     vec4 color;         // the color of light, color.w == 1.0
    ///     uvec4 light_type;   // Point => uvec4(0, 0, 0, 0), Uniform => uvec4(1, 0, 0, 0)
    /// };
    ///
    /// layout(set = 0, binding = 1) buffer Lights {
    ///     Light lights[]; // the number of lights must be gotten from another place
    /// };
    /// ```
    #[inline(always)]
    pub fn lights_buffer(&self) -> BufferHandler { self.scene_desc.lights_buffer(self.device()) }

    /// Creates a `UNIFORM` buffer of the scene status.
    ///
    /// The bind group provides [`Scene`] holds this uniform buffer.
    ///
    /// # Shader Example
    /// ```glsl
    /// layout(set = 0, binding = 2) uniform Scene {
    ///     float time;     // elapsed time since the scene was created.
    ///     uint nlights;   // the number of lights
    /// };
    /// ```
    #[inline(always)]
    pub fn scene_status_buffer(&self) -> BufferHandler {
        let scene_info = SceneInfo {
            time: self.elapsed().as_secs_f32(),
            num_of_lights: self.scene_desc.lights.len() as u32,
        };
        BufferHandler::from_slice(&[scene_info], self.device(), BufferUsage::UNIFORM)
    }

    /// Creates bind group.
    /// # Shader Examples
    /// Suppose binded as `set = 0`.
    /// ```glsl
    /// layout(set = 0, binding = 0) uniform Camera {
    ///     mat4 camera_matrix;     // the camera matrix
    ///     mat4 camera_projection; // the projection into the normalized view volume
    /// };
    ///
    /// struct Light {
    ///     vec4 position;      // the position of light, position.w == 1.0
    ///     vec4 color;         // the color of light, color.w == 1.0
    ///     uvec4 light_type;   // Point => uvec4(0, 0, 0, 0), Uniform => uvec4(1, 0, 0, 0)
    /// };
    ///
    /// layout(set = 0, binding = 1) buffer Lights {
    ///     Light lights[];
    /// };
    ///
    /// layout(set = 0, binding = 2) uniform Scene {
    ///     float time;     // elapsed time since the scene was created.
    ///     uint nlights;   // the number of lights
    /// };
    /// ```
    #[inline(always)]
    pub fn scene_bind_group(&self) -> BindGroup {
        bind_group_util::create_bind_group(
            self.device(),
            &self.bind_group_layout,
            vec![
                self.camera_buffer().binding_resource(),
                self.lights_buffer().binding_resource(),
                self.scene_status_buffer().binding_resource(),
            ],
        )
    }

    /// Adds a render object to the scene.
    ///
    /// If there already exists a render object with the same ID,
    /// replaces the render object and returns false.
    #[inline(always)]
    pub fn add_object<R: Rendered>(&mut self, object: &R) -> bool {
        let render_object = object.render_object(self);
        self.objects
            .insert(object.render_id(), render_object)
            .is_none()
    }
    /// Adds render objects to the scene.
    ///
    /// If there already exists a render object with the same ID,
    /// replaces the render object and returns false.
    #[inline(always)]
    pub fn add_objects<'a, R, I>(&mut self, objects: I) -> bool
    where
        R: 'a + Rendered,
        I: IntoIterator<Item = &'a R>, {
        let closure = move |flag, object| flag && self.add_object(object);
        objects.into_iter().fold(true, closure)
    }
    /// Removes a render object from the scene.
    ///
    /// If there does not exist the render object in the scene, does nothing and returns false.
    #[inline(always)]
    pub fn remove_object<R: Rendered>(&mut self, object: &R) -> bool {
        self.objects.remove(&object.render_id()).is_some()
    }
    /// Removes render objects from the scene.
    ///
    /// If there exists a render object which does not exist in the scene, returns false.
    #[inline(always)]
    pub fn remove_objects<'a, R, I>(&mut self, objects: I) -> bool
    where
        R: 'a + Rendered,
        I: IntoIterator<Item = &'a R>, {
        let closure = move |flag, object| flag && self.remove_object(object);
        objects.into_iter().fold(true, closure)
    }

    /// Removes all render objects from the scene.
    #[inline(always)]
    pub fn clear_objects(&mut self) { self.objects.clear() }

    /// Returns the number of the render objects in the scene.
    #[inline(always)]
    pub fn number_of_objects(&self) -> usize { self.objects.len() }

    /// Syncronizes the information of vertices of `object` in the CPU memory
    /// and that in the GPU memory.
    ///
    /// If there does not exist the render object in the scene, does nothing and returns false.
    #[inline(always)]
    pub fn update_vertex_buffer<R: Rendered>(&mut self, object: &R) -> bool {
        let (handler, objects) = (&self.device_handler, &mut self.objects);
        match objects.get_mut(&object.render_id()) {
            None => false,
            Some(render_object) => {
                let (vb, ib) = object.vertex_buffer(handler);
                render_object.vertex_buffer = vb;
                render_object.index_buffer = ib;
                true
            }
        }
    }

    /// Syncronizes the information of vertices of `objects` in the CPU memory
    /// and that in the GPU memory.
    ///
    /// If there exists a render object which does not exist in the scene, returns false.
    #[inline(always)]
    pub fn update_vertex_buffers<'a, R, I>(&mut self, objects: I) -> bool
    where
        R: 'a + Rendered,
        I: IntoIterator<Item = &'a R>, {
        let closure = move |flag, object: &R| flag && self.update_vertex_buffer(object);
        objects.into_iter().fold(true, closure)
    }

    /// Syncronizes the information of bind group of `object` in the CPU memory
    /// and that in the GPU memory.
    ///
    /// If there does not exist the render object in the scene, does nothing and returns false.
    #[inline(always)]
    pub fn update_bind_group<R: Rendered>(&mut self, object: &R) -> bool {
        let (handler, objects) = (&self.device_handler, &mut self.objects);
        match objects.get_mut(&object.render_id()) {
            Some(render_object) => {
                let bind_group = object.bind_group(handler, &render_object.bind_group_layout);
                render_object.bind_group = bind_group;
                true
            }
            _ => false,
        }
    }
    /// Syncronizes the information of bind group of `object` in the CPU memory
    /// and that in the GPU memory.
    ///
    /// If there exists a render object which does not exist in the scene, returns false.
    #[inline(always)]
    pub fn update_bind_groups<'a, R, I>(&mut self, objects: I) -> bool
    where
        R: 'a + Rendered,
        I: IntoIterator<Item = &'a R>, {
        let closure = move |flag, object: &R| flag && self.update_bind_group(object);
        objects.into_iter().fold(true, closure)
    }
    /// Syncronizes the information of pipeline of `object` in the CPU memory
    /// and that in the GPU memory.
    ///
    /// If there does not exist the render object in the scene, does nothing and returns false.
    #[inline(always)]
    pub fn update_pipeline<R: Rendered>(&mut self, object: &R) -> bool {
        let (handler, objects) = (&self.device_handler, &mut self.objects);
        match objects.get_mut(&object.render_id()) {
            Some(render_object) => {
                let device = handler.device();
                let pipeline_layout = device.create_pipeline_layout(&PipelineLayoutDescriptor {
                    bind_group_layouts: &[
                        &self.bind_group_layout,
                        &render_object.bind_group_layout,
                    ],
                    push_constant_ranges: &[],
                    label: None,
                });
                render_object.pipeline =
                    object.pipeline(handler, &pipeline_layout, self.scene_desc.sample_count);
                true
            }
            _ => false,
        }
    }
    /// Syncronizes the information of pipeline of `object` in the CPU memory
    /// and that in the GPU memory.
    ///
    /// If there exists a render object which does not exist in the scene, returns false.
    #[inline(always)]
    pub fn update_pipelines<'a, R, I>(&mut self, objects: I) -> bool
    where
        R: 'a + Rendered,
        I: IntoIterator<Item = &'a R>, {
        let closure = move |flag, object: &R| flag && self.update_pipeline(object);
        objects.into_iter().fold(true, closure)
    }
    #[inline(always)]
    fn depth_stencil_attachment_descriptor(
        depth_view: &TextureView,
    ) -> RenderPassDepthStencilAttachmentDescriptor {
        RenderPassDepthStencilAttachmentDescriptor {
            attachment: depth_view,
            depth_ops: Some(Operations {
                load: LoadOp::Clear(1.0),
                store: true,
            }),
            stencil_ops: Some(Operations {
                load: LoadOp::Clear(0),
                store: true,
            }),
        }
    }

    /// Renders the scene to `view`.
    pub fn render_scene(&mut self, view: &TextureView) {
        self.update_textures();
        let bind_group = self.scene_bind_group();
        let depth_view = self.foward_depth.create_view(&Default::default());
        let sampled_view = self.sampling_buffer.create_view(&Default::default());
        let mut encoder = self
            .device()
            .create_command_encoder(&CommandEncoderDescriptor { label: None });
        {
            let (attachment, resolve_target) = match self.scene_desc.sample_count != 1 {
                true => (&sampled_view, Some(view)),
                false => (view, None),
            };
            let mut rpass = encoder.begin_render_pass(&RenderPassDescriptor {
                color_attachments: &[RenderPassColorAttachmentDescriptor {
                    attachment,
                    resolve_target,
                    ops: Operations {
                        load: LoadOp::Clear(self.scene_desc.background),
                        store: true,
                    },
                }],
                depth_stencil_attachment: Some(Self::depth_stencil_attachment_descriptor(
                    &depth_view,
                )),
            });
            rpass.set_bind_group(0, &bind_group, &[]);
            for (_, object) in self.objects.iter() {
                rpass.set_pipeline(&object.pipeline);
                rpass.set_bind_group(1, &object.bind_group, &[]);
                rpass.set_vertex_buffer(0, object.vertex_buffer.buffer.slice(..));
                match object.index_buffer {
                    Some(ref index_buffer) => {
                        rpass.set_index_buffer(index_buffer.buffer.slice(..));
                        let index_size =
                            index_buffer.size as u32 / std::mem::size_of::<u32>() as u32;
                        rpass.draw_indexed(0..index_size, 0, 0..1);
                    }
                    None => {
                        let len = object.vertex_buffer.size / object.vertex_buffer.stride;
                        rpass.draw(0..len as u32, 0..1);
                    }
                }
            }
        }
        self.queue().submit(vec![encoder.finish()]);
    }
}

#[test]
fn render_id_test() {
    use std::collections::HashSet;
    use rayon::prelude::*;
    const N: usize = 100;
    let v: Vec<RenderID> = (0..N)
        .into_par_iter()
        .map(|_| RenderID::gen())
        .collect();
    let set: HashSet<RenderID> = v.into_iter().collect();
    assert_eq!(set.len(), N);
}