1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
use crate::topo_traits::*;
use std::collections::HashMap;
use truck_topology::*;

/// A trait for a unified definition of the function `mapped`.

impl<P, C, S> Mapped<P, C, S> for Vertex<P> {
    /// Returns a new vertex whose point is mapped by `point_mapping`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_modeling::topo_traits::Mapped;
    /// let v0 = Vertex::new(1);
    /// let v1 = v0.mapped(
    ///     &move |i: &usize| *i + 1,
    ///     &<()>::clone,
    ///     &<()>::clone,
    /// );
    /// assert_eq!(*v1.lock_point().unwrap(), 2);
    /// ```
    fn mapped<FP: Fn(&P) -> P, FC: Fn(&C) -> C, FS: Fn(&S) -> S>(
        &self,
        point_mapping: &FP,
        _: &FC,
        _: &FS,
    ) -> Self {
        Vertex::new(point_mapping(&*self.lock_point().unwrap()))
    }
}

impl<P, C, S> Mapped<P, C, S> for Edge<P, C> {
    /// Returns a new edge whose curve is mapped by `curve_mapping` and
    /// whose end points are mapped by `point_mapping`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_modeling::topo_traits::Mapped;
    /// let v0 = Vertex::new(0);
    /// let v1 = Vertex::new(1);
    /// let edge0 = Edge::new(&v0, &v1, 2);
    /// let edge1 = edge0.mapped(
    ///     &move |i: &usize| *i + 10,
    ///     &move |j: &usize| *j + 20,
    ///     &<()>::clone,
    /// );
    ///
    /// assert_eq!(*edge1.front().lock_point().unwrap(), 10);
    /// assert_eq!(*edge1.back().lock_point().unwrap(), 11);
    /// assert_eq!(*edge1.lock_curve().unwrap(), 22);
    /// ```
    fn mapped<FP: Fn(&P) -> P, FC: Fn(&C) -> C, FS: Fn(&S) -> S>(
        &self,
        point_mapping: &FP,
        curve_mapping: &FC,
        surface_mapping: &FS,
    ) -> Self {
        let v0 = self
            .absolute_front()
            .mapped(point_mapping, curve_mapping, surface_mapping);
        let v1 = self
            .absolute_back()
            .mapped(point_mapping, curve_mapping, surface_mapping);
        let curve = curve_mapping(&*self.lock_curve().unwrap());
        let mut edge = Edge::debug_new(&v0, &v1, curve);
        if edge.orientation() != self.orientation() {
            edge.invert();
        }
        edge
    }
}

impl<P, C, S> Mapped<P, C, S> for Wire<P, C> {
    /// Returns a new wire whose curves are mapped by `curve_mapping` and
    /// whose points are mapped by `point_mapping`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_modeling::topo_traits::Mapped;
    /// let v = Vertex::news(&[0, 1, 2, 3, 4]);
    /// let wire0: Wire<usize, usize> = vec![
    ///     Edge::new(&v[0], &v[1], 100),
    ///     Edge::new(&v[2], &v[1], 110).inverse(),
    ///     Edge::new(&v[3], &v[4], 120),
    ///     Edge::new(&v[4], &v[0], 130),
    /// ].into();
    /// let wire1 = wire0.mapped(
    ///     &move |i: &usize| *i + 10,
    ///     &move |j: &usize| *j + 1000,
    ///     &<()>::clone,
    /// );
    ///
    /// // Check the points
    /// for (v0, v1) in wire0.vertex_iter().zip(wire1.vertex_iter()) {
    ///     let i = *v0.lock_point().unwrap();
    ///     let j = *v1.lock_point().unwrap();
    ///     assert_eq!(i + 10, j);
    /// }
    ///
    /// // Check the curves and orientation
    /// for (edge0, edge1) in wire0.edge_iter().zip(wire1.edge_iter()) {
    ///     let i = *edge0.lock_curve().unwrap();
    ///     let j = *edge1.lock_curve().unwrap();
    ///     assert_eq!(i + 1000, j);
    ///     assert_eq!(edge0.orientation(), edge1.orientation());
    /// }
    ///
    /// // Check the connection
    /// assert_eq!(wire1[0].back(), wire1[1].front());
    /// assert_ne!(wire1[1].back(), wire1[2].front());
    /// assert_eq!(wire1[2].back(), wire1[3].front());
    /// assert_eq!(wire1[3].back(), wire1[0].front());
    /// ```
    fn mapped<FP: Fn(&P) -> P, FC: Fn(&C) -> C, FS: Fn(&S) -> S>(
        &self,
        point_mapping: &FP,
        curve_mapping: &FC,
        surface_mapping: &FS,
    ) -> Self {
        let mut vertex_map: HashMap<VertexID<P>, Vertex<P>> = HashMap::new();
        for v in self.vertex_iter() {
            if vertex_map.get(&v.id()).is_none() {
                let vert = v.mapped(point_mapping, curve_mapping, surface_mapping);
                vertex_map.insert(v.id(), vert);
            }
        }
        let mut wire = Wire::new();
        let mut edge_map: HashMap<EdgeID<C>, Edge<P, C>> = HashMap::new();
        for edge in self.edge_iter() {
            if let Some(new_edge) = edge_map.get(&edge.id()) {
                if edge.absolute_front() == edge.front() {
                    wire.push_back(new_edge.clone());
                } else {
                    wire.push_back(new_edge.inverse());
                }
            } else {
                let vertex0 = vertex_map.get(&edge.absolute_front().id()).unwrap().clone();
                let vertex1 = vertex_map.get(&edge.absolute_back().id()).unwrap().clone();
                let curve = curve_mapping(&*edge.lock_curve().unwrap());
                let new_edge = Edge::debug_new(&vertex0, &vertex1, curve);
                if edge.orientation() {
                    wire.push_back(new_edge.clone());
                } else {
                    wire.push_back(new_edge.inverse());
                }
                edge_map.insert(edge.id(), new_edge);
            }
        }
        wire
    }
}

impl<P, C, S> Mapped<P, C, S> for Face<P, C, S> {
    /// Returns a new face whose surface is mapped by `surface_mapping`,
    /// curves are mapped by `curve_mapping` and points are mapped by `point_mapping`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_modeling::topo_traits::Mapped;
    /// let v = Vertex::news(&[0, 1, 2, 3, 4, 5, 6]);
    /// let wire0 = Wire::from(vec![
    ///     Edge::new(&v[0], &v[1], 100),
    ///     Edge::new(&v[1], &v[2], 200),
    ///     Edge::new(&v[2], &v[3], 300),
    ///     Edge::new(&v[3], &v[0], 400),
    /// ]);
    /// let wire1 = Wire::from(vec![
    ///     Edge::new(&v[4], &v[5], 500),
    ///     Edge::new(&v[6], &v[5], 600).inverse(),
    ///     Edge::new(&v[6], &v[4], 700),
    /// ]);
    /// let face0 = Face::new(vec![wire0, wire1], 10000);
    /// let face1 = face0.mapped(
    ///     &move |i: &usize| *i + 10,
    ///     &move |j: &usize| *j + 1000,
    ///     &move |k: &usize| *k + 100000,
    /// );
    /// # for wire in face1.boundaries() {
    /// #    assert!(wire.is_closed());
    /// #    assert!(wire.is_simple());
    /// # }
    ///
    /// assert_eq!(
    ///     *face0.lock_surface().unwrap() + 100000,
    ///     *face1.lock_surface().unwrap(),
    /// );
    /// let biters0 = face0.boundary_iters();
    /// let biters1 = face1.boundary_iters();
    /// for (biter0, biter1) in biters0.into_iter().zip(biters1) {
    ///     for (edge0, edge1) in biter0.zip(biter1) {
    ///         assert_eq!(
    ///             *edge0.front().lock_point().unwrap() + 10,
    ///             *edge1.front().lock_point().unwrap(),
    ///         );
    ///         assert_eq!(
    ///             *edge0.back().lock_point().unwrap() + 10,
    ///             *edge1.back().lock_point().unwrap(),
    ///         );
    ///         assert_eq!(edge0.orientation(), edge1.orientation());
    ///         assert_eq!(
    ///             *edge0.lock_curve().unwrap() + 1000,
    ///             *edge1.lock_curve().unwrap(),
    ///         );
    ///     }
    /// }
    /// ```
    fn mapped<FP: Fn(&P) -> P, FC: Fn(&C) -> C, FS: Fn(&S) -> S>(
        &self,
        point_mapping: &FP,
        curve_mapping: &FC,
        surface_mapping: &FS,
    ) -> Self {
        let wires: Vec<_> = self
            .absolute_boundaries()
            .iter()
            .map(|wire| wire.mapped(point_mapping, curve_mapping, surface_mapping))
            .collect();
        let surface = surface_mapping(&*self.lock_surface().unwrap());
        let mut face = Face::debug_new(wires, surface);
        if !self.orientation() {
            face.invert();
        }
        face
    }
}

impl<P, C, S> Mapped<P, C, S> for Shell<P, C, S> {
    /// Returns a new shell whose surfaces are mapped by `surface_mapping`,
    /// curves are mapped by `curve_mapping` and points are mapped by `point_mapping`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_modeling::topo_traits::Mapped;
    /// let v = Vertex::news(&[0, 1, 2, 3, 4, 5, 6]);
    /// let wire0 = Wire::from(vec![
    ///     Edge::new(&v[0], &v[1], 100),
    ///     Edge::new(&v[1], &v[2], 200),
    ///     Edge::new(&v[2], &v[3], 300),
    ///     Edge::new(&v[3], &v[0], 400),
    /// ]);
    /// let wire1 = Wire::from(vec![
    ///     Edge::new(&v[4], &v[5], 500),
    ///     Edge::new(&v[6], &v[5], 600).inverse(),
    ///     Edge::new(&v[6], &v[4], 700),
    /// ]);
    /// let face0 = Face::new(vec![wire0, wire1], 10000);
    /// let face1 = face0.mapped(
    ///     &move |i: &usize| *i + 7,
    ///     &move |j: &usize| *j + 700,
    ///     &move |k: &usize| *k + 10000,
    /// );
    /// let shell0 = Shell::from(vec![face0, face1.inverse()]);
    /// let shell1 = shell0.mapped(
    ///     &move |i: &usize| *i + 50,
    ///     &move |j: &usize| *j + 5000,
    ///     &move |k: &usize| *k + 500000,
    /// );
    /// # for face in shell1.face_iter() {
    /// #    for bdry in face.absolute_boundaries() {
    /// #        assert!(bdry.is_closed());
    /// #        assert!(bdry.is_simple());
    /// #    }
    /// # }
    ///
    /// for (face0, face1) in shell0.face_iter().zip(shell1.face_iter()) {
    ///     assert_eq!(
    ///         *face0.lock_surface().unwrap() + 500000,
    ///         *face1.lock_surface().unwrap(),
    ///     );
    ///     assert_eq!(face0.orientation(), face1.orientation());
    ///     let biters0 = face0.boundary_iters();
    ///     let biters1 = face1.boundary_iters();
    ///     for (biter0, biter1) in biters0.into_iter().zip(biters1) {
    ///         for (edge0, edge1) in biter0.zip(biter1) {
    ///             assert_eq!(
    ///                 *edge0.front().lock_point().unwrap() + 50,
    ///                 *edge1.front().lock_point().unwrap(),
    ///             );
    ///             assert_eq!(
    ///                 *edge0.back().lock_point().unwrap() + 50,
    ///                 *edge1.back().lock_point().unwrap(),
    ///             );
    ///             assert_eq!(
    ///                 *edge0.lock_curve().unwrap() + 5000,
    ///                 *edge1.lock_curve().unwrap(),
    ///             );
    ///         }
    ///     }
    /// }
    /// ```
    fn mapped<FP: Fn(&P) -> P, FC: Fn(&C) -> C, FS: Fn(&S) -> S>(
        &self,
        point_mapping: &FP,
        curve_mapping: &FC,
        surface_mapping: &FS,
    ) -> Self {
        let mut shell = Shell::new();
        let mut vmap: HashMap<VertexID<P>, Vertex<P>> = HashMap::new();
        let vertex_iter = self
            .iter()
            .flat_map(Face::absolute_boundaries)
            .flat_map(Wire::vertex_iter);
        for vertex in vertex_iter {
            if vmap.get(&vertex.id()).is_none() {
                let new_vertex = vertex.mapped(point_mapping, curve_mapping, surface_mapping);
                vmap.insert(vertex.id(), new_vertex);
            }
        }
        let mut edge_map: HashMap<EdgeID<C>, Edge<P, C>> = HashMap::new();
        for face in self.face_iter() {
            let mut wires = Vec::new();
            for biter in face.absolute_boundaries() {
                let mut wire = Wire::new();
                for edge in biter {
                    if let Some(new_edge) = edge_map.get(&edge.id()) {
                        if edge.absolute_front() == edge.front() {
                            wire.push_back(new_edge.clone());
                        } else {
                            wire.push_back(new_edge.inverse());
                        }
                    } else {
                        let v0 = vmap.get(&edge.absolute_front().id()).unwrap();
                        let v1 = vmap.get(&edge.absolute_back().id()).unwrap();
                        let curve = curve_mapping(&*edge.lock_curve().unwrap());
                        let new_edge = Edge::debug_new(v0, v1, curve);
                        if edge.orientation() {
                            wire.push_back(new_edge.clone());
                        } else {
                            wire.push_back(new_edge.inverse());
                        }
                        edge_map.insert(edge.id(), new_edge);
                    }
                }
                wires.push(wire);
            }
            let surface = surface_mapping(&*face.lock_surface().unwrap());
            let mut new_face = Face::debug_new(wires, surface);
            if !face.orientation() {
                new_face.invert();
            }
            shell.push(new_face);
        }
        shell
    }
}

impl<P, C, S> Mapped<P, C, S> for Solid<P, C, S> {
    /// Returns a new solid whose surfaces are mapped by `surface_mapping`,
    /// curves are mapped by `curve_mapping` and points are mapped by `point_mapping`.
    #[inline(always)]
    fn mapped<FP: Fn(&P) -> P, FC: Fn(&C) -> C, FS: Fn(&S) -> S>(
        &self,
        point_mapping: &FP,
        curve_mapping: &FC,
        surface_mapping: &FS,
    ) -> Self {
        Solid::debug_new(
            self.boundaries()
                .iter()
                .map(|shell| shell.mapped(point_mapping, curve_mapping, surface_mapping))
                .collect(),
        )
    }
}

#[cfg(test)]
mod invert_variation {
    use super::*;

    #[test]
    fn invert_mapped_edge() {
        let v0 = Vertex::new(0);
        let v1 = Vertex::new(1);
        let edge0 = Edge::new(&v0, &v1, 2).inverse();
        let edge1 = edge0.mapped(
            &move |i: &usize| *i + 10,
            &move |j: &usize| *j + 20,
            &<()>::clone,
        );
        assert_eq!(*edge1.absolute_front().lock_point().unwrap(), 10);
        assert_eq!(*edge1.absolute_back().lock_point().unwrap(), 11);
        assert_eq!(edge0.orientation(), edge1.orientation());
        assert_eq!(*edge1.lock_curve().unwrap(), 22);
    }

    #[test]
    fn invert_mapped_face() {
        let v = Vertex::news(&[0, 1, 2, 3, 4, 5, 6]);
        let wire0 = Wire::from(vec![
            Edge::new(&v[0], &v[1], 100),
            Edge::new(&v[1], &v[2], 200),
            Edge::new(&v[2], &v[3], 300),
            Edge::new(&v[3], &v[0], 400),
        ]);
        let wire1 = Wire::from(vec![
            Edge::new(&v[4], &v[5], 500),
            Edge::new(&v[6], &v[5], 600).inverse(),
            Edge::new(&v[6], &v[4], 700),
        ]);
        let face0 = Face::new(vec![wire0, wire1], 10000).inverse();
        let face1 = face0.mapped(
            &move |i: &usize| *i + 10,
            &move |j: &usize| *j + 1000,
            &move |k: &usize| *k + 100000,
        );

        assert_eq!(
            *face0.lock_surface().unwrap() + 100000,
            *face1.lock_surface().unwrap(),
        );
        assert_eq!(face0.orientation(), face1.orientation());
        let biters0 = face0.boundary_iters();
        let biters1 = face1.boundary_iters();
        for (biter0, biter1) in biters0.into_iter().zip(biters1) {
            for (edge0, edge1) in biter0.zip(biter1) {
                assert_eq!(
                    *edge0.front().lock_point().unwrap() + 10,
                    *edge1.front().lock_point().unwrap(),
                );
                assert_eq!(
                    *edge0.back().lock_point().unwrap() + 10,
                    *edge1.back().lock_point().unwrap(),
                );
                assert_eq!(
                    *edge0.lock_curve().unwrap() + 1000,
                    *edge1.lock_curve().unwrap(),
                );
            }
        }
    }
}