1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
use crate::*;
use std::ops::{Deref, DerefMut, Mul};

/// surface constructed by revoluting a curve
/// # Examples
/// Revoluted sphere
/// ```
/// use truck_geometry::*;
/// use std::f64::consts::PI;
/// let knot_vec = KnotVec::bezier_knot(2);
/// let control_points = vec![
///     Vector4::new(1.0, 0.0, 0.0, 1.0),
///     Vector4::new(0.0, 1.0, 0.0, 0.0),
///     Vector4::new(-1.0, 0.0, 0.0, 1.0),
/// ];
/// // upper half circle on xy-plane
/// let uhcircle = NURBSCurve::new(BSplineCurve::new(knot_vec, control_points));
/// // sphere constructed by revolute circle
/// let sphere = RevolutedCurve::by_revolution(
///     uhcircle, Point3::origin(), Vector3::unit_x(),
/// );
/// const N: usize = 30;
/// for i in 0..=N {
///     for j in 0..=N {
///         let u = i as f64 / N as f64;
///         let v = 2.0 * PI * j as f64 / N as f64;
///         let pt: Vector3 = sphere.subs(u, v).to_vec();
///         assert_near2!(pt.magnitude2(), 1.0);
///         assert_near!(pt, sphere.normal(u, v));
///     }
/// }
/// ```
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub struct RevolutedCurve<C> {
    curve: C,
    origin: Point3,
    axis: Vector3,
}

/// Linearly extruded curve
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub struct ExtrudedCurve<C, V> {
    curve: C,
    vector: V,
}

/// invertible and transformable geometric element
/// # Examples
/// Curve processing example
/// ```
/// use truck_geometry::*;
/// let curve: BSplineCurve<Point3> = BSplineCurve::new(
///     KnotVec::bezier_knot(2),
///     vec![
///         Point3::new(0.0, 0.0, 0.0),
///         Point3::new(0.0, 0.0, 1.0),
///         Point3::new(1.0, 0.0, 0.0),
///     ],
/// );
/// let mut processed = Processor::<_, Matrix4>::new(curve.clone());
///
/// // both curves are the same curve
/// const N: usize = 100;
/// for i in 0..=N {
///     let t = i as f64 / N as f64;
///     assert_eq!(curve.subs(t), processed.subs(t));
/// }
///
/// // Processed curve can inverted!
/// processed.invert();
/// for i in 0..=N {
///     let t = i as f64 / N as f64;
///     assert_eq!(curve.subs(1.0 - t), processed.subs(t));
/// }
/// ```
/// Surface processing example
/// ```
/// use truck_geometry::*;
/// use std::f64::consts::PI;
///
/// let sphere = Sphere::new(Point3::new(1.0, 2.0, 3.0), 2.45);
/// let mut processed = Processor::<_, Matrix4>::new(sphere);
///
/// // both surfaces are the same surface
/// const N: usize = 100;
/// for i in 0..=N {
///     for j in 0..=N {
///         let u = PI * i as f64 / N as f64;
///         let v = 2.0 * PI * j as f64 / N as f64;
///         assert_eq!(sphere.subs(u, v), processed.subs(u, v));
///     }
/// }
///
/// // Processed surface can be inverted!
/// // Here, "invert surface" means swap (u, v)-axes.
/// processed.invert();
/// for i in 0..=N {
///     for j in 0..=N {
///         let u = PI * i as f64 / N as f64;
///         let v = 2.0 * PI * j as f64 / N as f64;
///         assert_eq!(sphere.subs(u, v), processed.subs(v, u));
///     }
/// }
/// ```
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub struct Processor<E, T> {
    entity: E,
    transform: T,
    orientation: bool,
}

/// The composited maps
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub struct PCurve<C, S> {
    curve: C,
    surface: S,
}

/// Intersection curve between two surfaces.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct IntersectionCurve<C, S> {
    // Considering rotational surfaces, we can consider the case
    // where the class `S` holds the curve `C` as a variable.
    surface0: Box<S>,
    surface1: Box<S>,
    leader: C,
    tol: f64,
}

/// trimmed curve for parametric curve
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct TrimmedCurve<C> {
    curve: C,
    range: (f64, f64),
}

mod curve_on_surface;
mod extruded_curve;
mod intersection_curve;
mod processor;
mod revolved_curve;
mod trimmied_curve;
pub use intersection_curve::double_projection;