1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
use super::constants::{
    Trit, COLUMNS, NUM_ROUNDS, NUM_SBOXES, PADDING, ROUND_CONSTANTS, ROWS, SBOX_LOOKUP,
    SHIFT_ROWS_LANES, SLICES, SLICESIZE, STATE_SIZE, TROIKA_RATE,
};
use crate::Result;
use core::fmt;

/// The Troika struct is a Sponge that uses the Troika
/// hashing algorithm.
/// ```rust
/// use troika::Troika;
/// // Create an array of 243 1s
/// let input = [1; 243];
/// // Create an array of 243 0s
/// let mut out = [0; 243];
/// let mut troika = Troika::default();
/// troika.absorb(&input);
/// troika.squeeze(&mut out);
/// ```
#[derive(Clone, Copy)]
pub struct Troika {
    num_rounds: usize,
    state: [Trit; STATE_SIZE],
}

impl Default for Troika {
    fn default() -> Troika {
        Troika {
            num_rounds: NUM_ROUNDS,
            state: [0u8; STATE_SIZE],
        }
    }
}

impl fmt::Debug for Troika {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "Troika: [rounds: [{}], state: {:?}",
            self.num_rounds,
            &self.state[..],
        )
    }
}

impl Troika {
    pub fn new(num_rounds: usize) -> Result<Troika> {
        let mut troika = Troika::default();
        troika.num_rounds = num_rounds;
        Ok(troika)
    }

    pub fn state(&self) -> &[Trit] {
        &self.state
    }

    pub fn reset(&mut self) {
        self.state = [0; STATE_SIZE];
    }

    pub fn absorb(&mut self, message: &[Trit]) {
        let mut message_length = message.len();
        let mut message_idx = 0;
        let mut trit_idx = 0;

        while message_length >= TROIKA_RATE {
            // Copy message block over the state
            for trit_idx in 0..TROIKA_RATE {
                self.state[trit_idx] = message[message_idx + trit_idx];
            }
            self.permutation();
            message_length -= TROIKA_RATE;
            message_idx += TROIKA_RATE;
        }

        // Pad last block
        let mut last_block = [0u8; TROIKA_RATE];

        // Copy over last incomplete message block
        for _ in 0..message_length {
            last_block[trit_idx] = message[trit_idx];
            trit_idx += 1;
        }

        // TODO: Check trit_idx is right here
        // Apply padding
        last_block[trit_idx] = PADDING;

        // Insert last message block
        for trit_idx in 0..TROIKA_RATE {
            self.state[trit_idx] = last_block[trit_idx];
        }
    }

    pub fn squeeze(&mut self, hash: &mut [Trit]) {
        let mut hash_length = hash.len();
        let mut hash_idx = 0;

        while hash_length >= TROIKA_RATE {
            self.permutation();
            // Extract rate output
            for trit_idx in 0..TROIKA_RATE {
                hash[hash_idx + trit_idx] = self.state[trit_idx];
            }
            hash_idx += TROIKA_RATE;
            hash_length -= TROIKA_RATE;
        }

        // Check if there is a last incomplete block
        if hash_length % TROIKA_RATE != 0 {
            self.permutation();
            for trit_idx in 0..hash_length {
                hash[trit_idx] = self.state[trit_idx];
            }
        }
    }

    pub fn permutation(&mut self) {
        assert!(self.num_rounds <= NUM_ROUNDS);

        for round in 0..self.num_rounds {
            self.sub_trytes();
            self.shift_rows_lanes();
            self.add_column_parity();
            self.add_round_constant(round);
        }
    }

    fn sub_trytes(&mut self) {
        for sbox_idx in 0..NUM_SBOXES {
            let sbox_input = 9 * self.state[3 * sbox_idx]
                + 3 * self.state[3 * sbox_idx + 1]
                + self.state[3 * sbox_idx + 2];
            let mut sbox_output = SBOX_LOOKUP[sbox_input as usize];
            self.state[3 * sbox_idx + 2] = sbox_output % 3;
            sbox_output /= 3;
            self.state[3 * sbox_idx + 1] = sbox_output % 3;
            sbox_output /= 3;
            self.state[3 * sbox_idx] = sbox_output % 3;
        }
    }

    fn shift_rows_lanes(&mut self) {
        let mut new_state = [0u8; STATE_SIZE];
        for i in 0..STATE_SIZE {
            new_state[i] = self.state[SHIFT_ROWS_LANES[i]];
        }

        self.state = new_state;
    }

    fn add_column_parity(&mut self) {
        let mut parity = [0u8; SLICES * COLUMNS];

        // First compute parity for each column
        for slice in 0..SLICES {
            for col in 0..COLUMNS {
                let mut col_sum = 0;
                for row in 0..ROWS {
                    col_sum += self.state[SLICESIZE * slice + COLUMNS * row + col];
                }
                parity[COLUMNS * slice + col] = col_sum % 3;
            }
        }

        // Add parity
        for slice in 0..SLICES {
            for row in 0..ROWS {
                for col in 0..COLUMNS {
                    let idx = SLICESIZE * slice + COLUMNS * row + col;
                    let sum_to_add = parity[(col + 8) % 9 + COLUMNS * slice]
                        + parity[(col + 1) % 9 + COLUMNS * ((slice + 1) % SLICES)];
                    self.state[idx] = (self.state[idx] + sum_to_add) % 3;
                }
            }
        }
    }

    fn add_round_constant(&mut self, round: usize) {
        for slice in 0..SLICES {
            for col in 0..COLUMNS {
                let idx = SLICESIZE * slice + col;
                self.state[idx] =
                    (self.state[idx] + ROUND_CONSTANTS[round][slice * COLUMNS + col]) % 3;
            }
        }
    }
}

#[cfg(test)]
mod test_troika {
    use super::*;

    const HASH: [u8; 243] = [
        0, 2, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2,
        1, 1, 1, 0, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 0, 2, 1,
        1, 2, 0, 1, 1, 1, 1, 1, 2, 2, 0, 0, 2, 2, 2, 2, 0, 0, 2, 2, 2, 1, 2, 2, 0, 2, 1, 1, 2, 1,
        1, 1, 2, 2, 1, 1, 0, 0, 0, 2, 2, 2, 0, 2, 1, 1, 1, 1, 0, 0, 1, 0, 2, 0, 2, 0, 2, 0, 0, 0,
        0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 2, 0, 0, 1, 0, 1, 0, 2, 0, 2, 2, 0, 0, 2, 2, 0, 1, 2, 1, 0,
        0, 1, 2, 1, 1, 0, 0, 1, 1, 0, 2, 1, 1, 0, 1, 2, 0, 0, 0, 1, 2, 2, 1, 1, 1, 0, 0, 2, 0, 1,
        1, 2, 1, 1, 2, 1, 0, 1, 2, 2, 2, 2, 1, 2, 0, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 0, 2, 1,
        0, 1, 1, 1, 0, 2, 2, 0, 0, 2, 0, 2, 0, 1, 2, 0, 0, 2, 2, 1, 1, 2, 0, 1, 0, 0, 0, 0, 2, 0,
        2, 2, 2,
    ];

    #[test]
    fn test_hash() {
        let mut troika = Troika::default();
        let mut output = [0u8; 243];
        let input = [0u8; 243];
        troika.absorb(&input);
        troika.squeeze(&mut output);

        assert!(
            output.iter().zip(HASH.iter()).all(|(a, b)| a == b),
            "Arrays are not equal"
        );
    }
}