1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
use alloc::alloc::handle_alloc_error;
use alloc::boxed::Box;
use core::alloc::Layout;
use core::borrow;
use core::cmp::Ordering;
use core::convert::From;
use core::ffi::c_void;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::mem::{ManuallyDrop, MaybeUninit};
use core::ops::Deref;
use core::ptr::{self, NonNull};
use core::sync::atomic;
use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
use core::{isize, usize};

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "stable_deref_trait")]
use stable_deref_trait::{CloneStableDeref, StableDeref};

use crate::{abort, ArcBorrow, HeaderSlice, OffsetArc, UniqueArc};

/// A soft limit on the amount of references that may be made to an `Arc`.
///
/// Going above this limit will abort your program (although not
/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
const MAX_REFCOUNT: usize = (isize::MAX) as usize;

/// The object allocated by an `Arc<T>`
#[repr(C)]
pub(crate) struct ArcInner<T: ?Sized> {
    pub(crate) count: atomic::AtomicUsize,
    pub(crate) data: T,
}

unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}

/// An atomically reference counted shared pointer
///
/// See the documentation for [`Arc`] in the standard library. Unlike the
/// standard library `Arc`, this `Arc` does not support weak reference counting.
///
/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
#[repr(transparent)]
pub struct Arc<T: ?Sized> {
    pub(crate) p: ptr::NonNull<ArcInner<T>>,
    pub(crate) phantom: PhantomData<T>,
}

unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}

impl<T> Arc<T> {
    /// Construct an `Arc<T>`
    #[inline]
    pub fn new(data: T) -> Self {
        let ptr = Box::into_raw(Box::new(ArcInner {
            count: atomic::AtomicUsize::new(1),
            data,
        }));

        unsafe {
            Arc {
                p: ptr::NonNull::new_unchecked(ptr),
                phantom: PhantomData,
            }
        }
    }

    /// Reconstruct the `Arc<T>` from a raw pointer obtained from into_raw()
    ///
    /// Note: This raw pointer will be offset in the allocation and must be preceded
    /// by the atomic count.
    ///
    /// It is recommended to use OffsetArc for this
    ///
    ///  # Safety
    /// - The given pointer must be a valid pointer to `T` that came from [`Arc::into_raw`].
    /// - After `from_raw`, the pointer must not be accessed.
    #[inline]
    pub unsafe fn from_raw(ptr: *const T) -> Self {
        // FIXME: when `byte_sub` is stabilized, this can accept T: ?Sized.

        // To find the corresponding pointer to the `ArcInner` we need
        // to subtract the offset of the `data` field from the pointer.
        let ptr = (ptr as *const u8).sub(offset_of!(ArcInner<T>, data));
        Arc::from_raw_inner(ptr as *mut ArcInner<T>)
    }

    /// Temporarily converts |self| into a bonafide OffsetArc and exposes it to the
    /// provided callback. The refcount is not modified.
    #[inline(always)]
    pub fn with_raw_offset_arc<F, U>(&self, f: F) -> U
    where
        F: FnOnce(&OffsetArc<T>) -> U,
    {
        // Synthesize transient Arc, which never touches the refcount of the ArcInner.
        // Store transient in `ManuallyDrop`, to leave the refcount untouched.
        let transient = unsafe { ManuallyDrop::new(Arc::into_raw_offset(ptr::read(self))) };

        // Expose the transient Arc to the callback, which may clone it if it wants.
        f(&transient)
    }

    /// Converts an `Arc` into a `OffsetArc`. This consumes the `Arc`, so the refcount
    /// is not modified.
    #[inline]
    pub fn into_raw_offset(a: Self) -> OffsetArc<T> {
        unsafe {
            OffsetArc {
                ptr: ptr::NonNull::new_unchecked(Arc::into_raw(a) as *mut T),
                phantom: PhantomData,
            }
        }
    }

    /// Converts a `OffsetArc` into an `Arc`. This consumes the `OffsetArc`, so the refcount
    /// is not modified.
    #[inline]
    pub fn from_raw_offset(a: OffsetArc<T>) -> Self {
        let a = ManuallyDrop::new(a);
        let ptr = a.ptr.as_ptr();
        unsafe { Arc::from_raw(ptr) }
    }

    /// Returns the inner value, if the [`Arc`] has exactly one strong reference.
    ///
    /// Otherwise, an [`Err`] is returned with the same [`Arc`] that was
    /// passed in.
    ///
    /// # Examples
    ///
    /// ```
    /// use triomphe::Arc;
    ///
    /// let x = Arc::new(3);
    /// assert_eq!(Arc::try_unwrap(x), Ok(3));
    ///
    /// let x = Arc::new(4);
    /// let _y = Arc::clone(&x);
    /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
    /// ```
    pub fn try_unwrap(this: Self) -> Result<T, Self> {
        Self::try_unique(this).map(UniqueArc::into_inner)
    }
}

impl<T> Arc<[T]> {
    /// Reconstruct the `Arc<[T]>` from a raw pointer obtained from `into_raw()`.
    ///
    /// [`Arc::from_raw`] should accept unsized types, but this is not trivial to do correctly
    /// until the feature [`pointer_bytes_offsets`](https://github.com/rust-lang/rust/issues/96283)
    /// is stabilized. This is stopgap solution for slices.
    ///
    ///  # Safety
    /// - The given pointer must be a valid pointer to `[T]` that came from [`Arc::into_raw`].
    /// - After `from_raw_slice`, the pointer must not be accessed.
    pub unsafe fn from_raw_slice(ptr: *const [T]) -> Self {
        let len = (*ptr).len();
        // Assuming the offset of `T` in `ArcInner<T>` is the same
        // as as offset of `[T]` in `ArcInner<[T]>`.
        // (`offset_of!` macro requires `Sized`.)
        let arc_inner_ptr = (ptr as *const u8).sub(offset_of!(ArcInner<T>, data));
        // Synthesize the fat pointer: the pointer metadata for `Arc<[T]>`
        // is the same as the pointer metadata for `[T]`: the length.
        let fake_slice = ptr::slice_from_raw_parts_mut(arc_inner_ptr as *mut T, len);
        Arc::from_raw_inner(fake_slice as *mut ArcInner<[T]>)
    }
}

impl<T: ?Sized> Arc<T> {
    /// Convert the `Arc<T>` to a raw pointer, suitable for use across FFI
    ///
    /// Note: This returns a pointer to the data T, which is offset in the allocation.
    ///
    /// It is recommended to use OffsetArc for this.
    #[inline]
    pub fn into_raw(this: Self) -> *const T {
        let this = ManuallyDrop::new(this);
        this.as_ptr()
    }

    /// Returns the raw pointer.
    ///
    /// Same as into_raw except `self` isn't consumed.
    #[inline]
    pub fn as_ptr(&self) -> *const T {
        // SAFETY: This cannot go through a reference to `data`, because this method
        // is used to implement `into_raw`. To reconstruct the full `Arc` from this
        // pointer, it needs to maintain its full provenance, and not be reduced to
        // just the contained `T`.
        unsafe { ptr::addr_of_mut!((*self.ptr()).data) }
    }

    /// Produce a pointer to the data that can be converted back
    /// to an Arc. This is basically an `&Arc<T>`, without the extra indirection.
    /// It has the benefits of an `&T` but also knows about the underlying refcount
    /// and can be converted into more `Arc<T>`s if necessary.
    #[inline]
    pub fn borrow_arc(&self) -> ArcBorrow<'_, T> {
        ArcBorrow(&**self)
    }

    /// Returns the address on the heap of the Arc itself -- not the T within it -- for memory
    /// reporting.
    pub fn heap_ptr(&self) -> *const c_void {
        self.p.as_ptr() as *const ArcInner<T> as *const c_void
    }

    #[inline]
    pub(super) fn into_raw_inner(this: Self) -> *mut ArcInner<T> {
        let this = ManuallyDrop::new(this);
        this.ptr()
    }

    /// Construct an `Arc` from an allocated `ArcInner`.
    /// # Safety
    /// The `ptr` must point to a valid instance, allocated by an `Arc`. The reference could will
    /// not be modified.
    pub(super) unsafe fn from_raw_inner(ptr: *mut ArcInner<T>) -> Self {
        Arc {
            p: ptr::NonNull::new_unchecked(ptr),
            phantom: PhantomData,
        }
    }

    #[inline]
    pub(super) fn inner(&self) -> &ArcInner<T> {
        // This unsafety is ok because while this arc is alive we're guaranteed
        // that the inner pointer is valid. Furthermore, we know that the
        // `ArcInner` structure itself is `Sync` because the inner data is
        // `Sync` as well, so we're ok loaning out an immutable pointer to these
        // contents.
        unsafe { &*self.ptr() }
    }

    // Non-inlined part of `drop`. Just invokes the destructor.
    #[inline(never)]
    unsafe fn drop_slow(&mut self) {
        let _ = Box::from_raw(self.ptr());
    }

    /// Test pointer equality between the two Arcs, i.e. they must be the _same_
    /// allocation
    #[inline]
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
        this.ptr() == other.ptr()
    }

    pub(crate) fn ptr(&self) -> *mut ArcInner<T> {
        self.p.as_ptr()
    }

    /// Allocates an `ArcInner<T>` with sufficient space for
    /// a possibly-unsized inner value where the value has the layout provided.
    ///
    /// The function `mem_to_arcinner` is called with the data pointer
    /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
    ///
    /// ## Safety
    ///
    /// `mem_to_arcinner` must return the same pointer, the only things that can change are
    /// - its type
    /// - its metadata
    ///
    /// `value_layout` must be correct for `T`.
    #[allow(unused_unsafe)]
    pub(super) unsafe fn allocate_for_layout(
        value_layout: Layout,
        mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
    ) -> NonNull<ArcInner<T>> {
        let layout = Layout::new::<ArcInner<()>>()
            .extend(value_layout)
            .unwrap()
            .0
            .pad_to_align();

        // Safety: we propagate safety requirements to the caller
        unsafe {
            Arc::try_allocate_for_layout(value_layout, mem_to_arcinner)
                .unwrap_or_else(|_| handle_alloc_error(layout))
        }
    }

    /// Allocates an `ArcInner<T>` with sufficient space for
    /// a possibly-unsized inner value where the value has the layout provided,
    /// returning an error if allocation fails.
    ///
    /// The function `mem_to_arcinner` is called with the data pointer
    /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
    ///
    /// ## Safety
    ///
    /// `mem_to_arcinner` must return the same pointer, the only things that can change are
    /// - its type
    /// - its metadata
    ///
    /// `value_layout` must be correct for `T`.
    #[allow(unused_unsafe)]
    unsafe fn try_allocate_for_layout(
        value_layout: Layout,
        mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
    ) -> Result<NonNull<ArcInner<T>>, ()> {
        let layout = Layout::new::<ArcInner<()>>()
            .extend(value_layout)
            .unwrap()
            .0
            .pad_to_align();

        let ptr = NonNull::new(alloc::alloc::alloc(layout)).ok_or(())?;

        // Initialize the ArcInner
        let inner = mem_to_arcinner(ptr.as_ptr());
        debug_assert_eq!(unsafe { Layout::for_value(&*inner) }, layout);

        unsafe {
            ptr::write(&mut (*inner).count, atomic::AtomicUsize::new(1));
        }

        // Safety: `ptr` is checked to be non-null,
        //         `inner` is the same as `ptr` (per the safety requirements of this function)
        unsafe { Ok(NonNull::new_unchecked(inner)) }
    }
}

impl<H, T> Arc<HeaderSlice<H, [T]>> {
    pub(super) fn allocate_for_header_and_slice(
        len: usize,
    ) -> NonNull<ArcInner<HeaderSlice<H, [T]>>> {
        let layout = Layout::new::<H>()
            .extend(Layout::array::<T>(len).unwrap())
            .unwrap()
            .0
            .pad_to_align();

        unsafe {
            // Safety:
            // - the provided closure does not change the pointer (except for meta & type)
            // - the provided layout is valid for `HeaderSlice<H, [T]>`
            Arc::allocate_for_layout(layout, |mem| {
                // Synthesize the fat pointer. We do this by claiming we have a direct
                // pointer to a [T], and then changing the type of the borrow. The key
                // point here is that the length portion of the fat pointer applies
                // only to the number of elements in the dynamically-sized portion of
                // the type, so the value will be the same whether it points to a [T]
                // or something else with a [T] as its last member.
                let fake_slice = ptr::slice_from_raw_parts_mut(mem as *mut T, len);
                fake_slice as *mut ArcInner<HeaderSlice<H, [T]>>
            })
        }
    }
}

impl<T> Arc<MaybeUninit<T>> {
    /// Create an Arc contains an `MaybeUninit<T>`.
    pub fn new_uninit() -> Self {
        Arc::new(MaybeUninit::<T>::uninit())
    }

    /// Calls `MaybeUninit::write` on the value contained.
    ///
    /// ## Panics
    ///
    /// If the `Arc` is not unique.
    #[deprecated(
        since = "0.1.7",
        note = "this function previously was UB and now panics for non-unique `Arc`s. Use `UniqueArc::write` instead."
    )]
    #[track_caller]
    pub fn write(&mut self, val: T) -> &mut T {
        UniqueArc::write(must_be_unique(self), val)
    }

    /// Obtain a mutable pointer to the stored `MaybeUninit<T>`.
    pub fn as_mut_ptr(&mut self) -> *mut MaybeUninit<T> {
        unsafe { &mut (*self.ptr()).data }
    }

    /// # Safety
    ///
    /// Must initialize all fields before calling this function.
    #[inline]
    pub unsafe fn assume_init(self) -> Arc<T> {
        Arc::from_raw_inner(ManuallyDrop::new(self).ptr().cast())
    }
}

impl<T> Arc<[MaybeUninit<T>]> {
    /// Create an Arc contains an array `[MaybeUninit<T>]` of `len`.
    pub fn new_uninit_slice(len: usize) -> Self {
        UniqueArc::new_uninit_slice(len).shareable()
    }

    /// Obtain a mutable slice to the stored `[MaybeUninit<T>]`.
    #[deprecated(
        since = "0.1.8",
        note = "this function previously was UB and now panics for non-unique `Arc`s. Use `UniqueArc` or `get_mut` instead."
    )]
    #[track_caller]
    pub fn as_mut_slice(&mut self) -> &mut [MaybeUninit<T>] {
        must_be_unique(self)
    }

    /// # Safety
    ///
    /// Must initialize all fields before calling this function.
    #[inline]
    pub unsafe fn assume_init(self) -> Arc<[T]> {
        Arc::from_raw_inner(ManuallyDrop::new(self).ptr() as _)
    }
}

impl<T: ?Sized> Clone for Arc<T> {
    #[inline]
    fn clone(&self) -> Self {
        // Using a relaxed ordering is alright here, as knowledge of the
        // original reference prevents other threads from erroneously deleting
        // the object.
        //
        // As explained in the [Boost documentation][1], Increasing the
        // reference counter can always be done with memory_order_relaxed: New
        // references to an object can only be formed from an existing
        // reference, and passing an existing reference from one thread to
        // another must already provide any required synchronization.
        //
        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
        let old_size = self.inner().count.fetch_add(1, Relaxed);

        // However we need to guard against massive refcounts in case someone
        // is `mem::forget`ing Arcs. If we don't do this the count can overflow
        // and users will use-after free. We racily saturate to `isize::MAX` on
        // the assumption that there aren't ~2 billion threads incrementing
        // the reference count at once. This branch will never be taken in
        // any realistic program.
        //
        // We abort because such a program is incredibly degenerate, and we
        // don't care to support it.
        if old_size > MAX_REFCOUNT {
            abort();
        }

        unsafe {
            Arc {
                p: ptr::NonNull::new_unchecked(self.ptr()),
                phantom: PhantomData,
            }
        }
    }
}

impl<T: ?Sized> Deref for Arc<T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        &self.inner().data
    }
}

impl<T: Clone> Arc<T> {
    /// Makes a mutable reference to the `Arc`, cloning if necessary
    ///
    /// This is functionally equivalent to [`Arc::make_mut`][mm] from the standard library.
    ///
    /// If this `Arc` is uniquely owned, `make_mut()` will provide a mutable
    /// reference to the contents. If not, `make_mut()` will create a _new_ `Arc`
    /// with a copy of the contents, update `this` to point to it, and provide
    /// a mutable reference to its contents.
    ///
    /// This is useful for implementing copy-on-write schemes where you wish to
    /// avoid copying things if your `Arc` is not shared.
    ///
    /// [mm]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html#method.make_mut
    #[inline]
    pub fn make_mut(this: &mut Self) -> &mut T {
        if !this.is_unique() {
            // Another pointer exists; clone
            *this = Arc::new(T::clone(this));
        }

        unsafe {
            // This unsafety is ok because we're guaranteed that the pointer
            // returned is the *only* pointer that will ever be returned to T. Our
            // reference count is guaranteed to be 1 at this point, and we required
            // the Arc itself to be `mut`, so we're returning the only possible
            // reference to the inner data.
            &mut (*this.ptr()).data
        }
    }

    /// Makes a `UniqueArc` from an `Arc`, cloning if necessary.
    ///
    /// If this `Arc` is uniquely owned, `make_unique()` will provide a `UniqueArc`
    /// containing `this`. If not, `make_unique()` will create a _new_ `Arc`
    /// with a copy of the contents, update `this` to point to it, and provide
    /// a `UniqueArc` to it.
    ///
    /// This is useful for implementing copy-on-write schemes where you wish to
    /// avoid copying things if your `Arc` is not shared.
    #[inline]
    pub fn make_unique(this: &mut Self) -> &mut UniqueArc<T> {
        if !this.is_unique() {
            // Another pointer exists; clone
            *this = Arc::new(T::clone(this));
        }

        unsafe {
            // Safety: this is either unique or just created (which is also unique)
            UniqueArc::from_arc_ref(this)
        }
    }

    /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the clone.
    ///
    /// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to `(*arc_t).clone()`, but will avoid cloning the inner value where possible.
    pub fn unwrap_or_clone(this: Arc<T>) -> T {
        Self::try_unwrap(this).unwrap_or_else(|this| T::clone(&this))
    }
}

impl<T: ?Sized> Arc<T> {
    /// Provides mutable access to the contents _if_ the `Arc` is uniquely owned.
    #[inline]
    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
        if this.is_unique() {
            unsafe {
                // See make_mut() for documentation of the threadsafety here.
                Some(&mut (*this.ptr()).data)
            }
        } else {
            None
        }
    }

    /// Provides unique access to the arc _if_ the `Arc` is uniquely owned.
    pub fn get_unique(this: &mut Self) -> Option<&mut UniqueArc<T>> {
        Self::try_as_unique(this).ok()
    }

    /// Whether or not the `Arc` is uniquely owned (is the refcount 1?).
    pub fn is_unique(&self) -> bool {
        // See the extensive discussion in [1] for why this needs to be Acquire.
        //
        // [1] https://github.com/servo/servo/issues/21186
        Self::count(self) == 1
    }

    /// Gets the number of [`Arc`] pointers to this allocation
    pub fn count(this: &Self) -> usize {
        this.inner().count.load(Acquire)
    }

    /// Returns a [`UniqueArc`] if the [`Arc`] has exactly one strong reference.
    ///
    /// Otherwise, an [`Err`] is returned with the same [`Arc`] that was
    /// passed in.
    ///
    /// # Examples
    ///
    /// ```
    /// use triomphe::{Arc, UniqueArc};
    ///
    /// let x = Arc::new(3);
    /// assert_eq!(UniqueArc::into_inner(Arc::try_unique(x).unwrap()), 3);
    ///
    /// let x = Arc::new(4);
    /// let _y = Arc::clone(&x);
    /// assert_eq!(
    ///     *Arc::try_unique(x).map(UniqueArc::into_inner).unwrap_err(),
    ///     4,
    /// );
    /// ```
    pub fn try_unique(this: Self) -> Result<UniqueArc<T>, Self> {
        if this.is_unique() {
            // Safety: The current arc is unique and making a `UniqueArc`
            //         from it is sound
            unsafe { Ok(UniqueArc::from_arc(this)) }
        } else {
            Err(this)
        }
    }

    pub(crate) fn try_as_unique(this: &mut Self) -> Result<&mut UniqueArc<T>, &mut Self> {
        if this.is_unique() {
            // Safety: The current arc is unique and making a `UniqueArc`
            //         from it is sound
            unsafe { Ok(UniqueArc::from_arc_ref(this)) }
        } else {
            Err(this)
        }
    }
}

impl<T: ?Sized> Drop for Arc<T> {
    #[inline]
    fn drop(&mut self) {
        // Because `fetch_sub` is already atomic, we do not need to synchronize
        // with other threads unless we are going to delete the object.
        if self.inner().count.fetch_sub(1, Release) != 1 {
            return;
        }

        // FIXME(bholley): Use the updated comment when [2] is merged.
        //
        // This load is needed to prevent reordering of use of the data and
        // deletion of the data.  Because it is marked `Release`, the decreasing
        // of the reference count synchronizes with this `Acquire` load. This
        // means that use of the data happens before decreasing the reference
        // count, which happens before this load, which happens before the
        // deletion of the data.
        //
        // As explained in the [Boost documentation][1],
        //
        // > It is important to enforce any possible access to the object in one
        // > thread (through an existing reference) to *happen before* deleting
        // > the object in a different thread. This is achieved by a "release"
        // > operation after dropping a reference (any access to the object
        // > through this reference must obviously happened before), and an
        // > "acquire" operation before deleting the object.
        //
        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
        // [2]: https://github.com/rust-lang/rust/pull/41714
        self.inner().count.load(Acquire);

        unsafe {
            self.drop_slow();
        }
    }
}

impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
    fn eq(&self, other: &Arc<T>) -> bool {
        Self::ptr_eq(self, other) || *(*self) == *(*other)
    }

    #[allow(clippy::partialeq_ne_impl)]
    fn ne(&self, other: &Arc<T>) -> bool {
        !Self::ptr_eq(self, other) && *(*self) != *(*other)
    }
}

impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
    fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
        (**self).partial_cmp(&**other)
    }

    fn lt(&self, other: &Arc<T>) -> bool {
        *(*self) < *(*other)
    }

    fn le(&self, other: &Arc<T>) -> bool {
        *(*self) <= *(*other)
    }

    fn gt(&self, other: &Arc<T>) -> bool {
        *(*self) > *(*other)
    }

    fn ge(&self, other: &Arc<T>) -> bool {
        *(*self) >= *(*other)
    }
}

impl<T: ?Sized + Ord> Ord for Arc<T> {
    fn cmp(&self, other: &Arc<T>) -> Ordering {
        (**self).cmp(&**other)
    }
}

impl<T: ?Sized + Eq> Eq for Arc<T> {}

impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: ?Sized> fmt::Pointer for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&self.ptr(), f)
    }
}

impl<T: Default> Default for Arc<T> {
    #[inline]
    fn default() -> Arc<T> {
        Arc::new(Default::default())
    }
}

impl<T: ?Sized + Hash> Hash for Arc<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state)
    }
}

impl<T> From<T> for Arc<T> {
    #[inline]
    fn from(t: T) -> Self {
        Arc::new(t)
    }
}

impl<A> FromIterator<A> for Arc<[A]> {
    fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
        UniqueArc::from_iter(iter).shareable()
    }
}

impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
    #[inline]
    fn borrow(&self) -> &T {
        self
    }
}

impl<T: ?Sized> AsRef<T> for Arc<T> {
    #[inline]
    fn as_ref(&self) -> &T {
        self
    }
}

#[cfg(feature = "stable_deref_trait")]
unsafe impl<T: ?Sized> StableDeref for Arc<T> {}
#[cfg(feature = "stable_deref_trait")]
unsafe impl<T: ?Sized> CloneStableDeref for Arc<T> {}

#[cfg(feature = "serde")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Arc<T> {
    fn deserialize<D>(deserializer: D) -> Result<Arc<T>, D::Error>
    where
        D: ::serde::de::Deserializer<'de>,
    {
        T::deserialize(deserializer).map(Arc::new)
    }
}

#[cfg(feature = "serde")]
impl<T: Serialize> Serialize for Arc<T> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: ::serde::ser::Serializer,
    {
        (**self).serialize(serializer)
    }
}

// Safety:
// This implementation must guarantee that it is sound to call replace_ptr with an unsized variant
// of the pointer retuned in `as_sized_ptr`. The basic property of Unsize coercion is that safety
// variants and layout is unaffected. The Arc does not rely on any other property of T. This makes
// any unsized ArcInner valid for being shared with the sized variant.
// This does _not_ mean that any T can be unsized into an U, but rather than if such unsizing is
// possible then it can be propagated into the Arc<T>.
#[cfg(feature = "unsize")]
unsafe impl<T, U: ?Sized> unsize::CoerciblePtr<U> for Arc<T> {
    type Pointee = T;
    type Output = Arc<U>;

    fn as_sized_ptr(&mut self) -> *mut T {
        // Returns a pointer to the complete inner. The unsizing itself won't care about the
        // pointer value and promises not to offset it.
        self.p.as_ptr() as *mut T
    }

    unsafe fn replace_ptr(self, new: *mut U) -> Arc<U> {
        // Fix the provenance by ensuring that of `self` is used.
        let inner = ManuallyDrop::new(self);
        let p = inner.p.as_ptr() as *mut T;
        // Safety: This points to an ArcInner of the previous self and holds shared ownership since
        // the old pointer never decremented the reference count. The caller upholds that `new` is
        // an unsized version of the previous ArcInner. This assumes that unsizing to the fat
        // pointer tag of an `ArcInner<U>` and `U` is isomorphic under a direct pointer cast since
        // in reality we unsized *mut T to *mut U at the address of the ArcInner. This is the case
        // for all currently envisioned unsized types where the tag of T and ArcInner<T> are simply
        // the same.
        Arc::from_raw_inner(p.replace_ptr(new) as *mut ArcInner<U>)
    }
}

#[track_caller]
fn must_be_unique<T: ?Sized>(arc: &mut Arc<T>) -> &mut UniqueArc<T> {
    match Arc::try_as_unique(arc) {
        Ok(unique) => unique,
        Err(this) => panic!("`Arc` must be unique in order for this operation to be safe, there are currently {} copies", Arc::count(this)),
    }
}

#[cfg(test)]
mod tests {
    use crate::arc::Arc;
    use alloc::borrow::ToOwned;
    use alloc::string::String;
    use alloc::vec::Vec;
    use core::iter::FromIterator;
    use core::mem::MaybeUninit;
    #[cfg(feature = "unsize")]
    use unsize::{CoerceUnsize, Coercion};

    #[test]
    fn try_unwrap() {
        let x = Arc::new(100usize);
        let y = x.clone();

        // The count should be two so `try_unwrap()` should fail
        assert_eq!(Arc::count(&x), 2);
        assert!(Arc::try_unwrap(x).is_err());

        // Since `x` has now been dropped, the count should be 1
        // and `try_unwrap()` should succeed
        assert_eq!(Arc::count(&y), 1);
        assert_eq!(Arc::try_unwrap(y), Ok(100));
    }

    #[test]
    #[cfg(feature = "unsize")]
    fn coerce_to_slice() {
        let x = Arc::new([0u8; 4]);
        let y: Arc<[u8]> = x.clone().unsize(Coercion::to_slice());
        assert_eq!((*x).as_ptr(), (*y).as_ptr());
    }

    #[test]
    #[cfg(feature = "unsize")]
    fn coerce_to_dyn() {
        let x: Arc<_> = Arc::new(|| 42u32);
        let x: Arc<_> = x.unsize(Coercion::<_, dyn Fn() -> u32>::to_fn());
        assert_eq!((*x)(), 42);
    }

    #[test]
    #[allow(deprecated)]
    fn maybeuninit() {
        let mut arc: Arc<MaybeUninit<_>> = Arc::new_uninit();
        arc.write(999);

        let arc = unsafe { arc.assume_init() };
        assert_eq!(*arc, 999);
    }

    #[test]
    #[allow(deprecated)]
    #[should_panic = "`Arc` must be unique in order for this operation to be safe"]
    fn maybeuninit_ub_to_proceed() {
        let mut uninit = Arc::new_uninit();
        let clone = uninit.clone();

        let x: &MaybeUninit<String> = &*clone;

        // This write invalidates `x` reference
        uninit.write(String::from("nonononono"));

        // Read invalidated reference to trigger UB
        let _ = &*x;
    }

    #[test]
    #[allow(deprecated)]
    #[should_panic = "`Arc` must be unique in order for this operation to be safe"]
    fn maybeuninit_slice_ub_to_proceed() {
        let mut uninit = Arc::new_uninit_slice(13);
        let clone = uninit.clone();

        let x: &[MaybeUninit<String>] = &*clone;

        // This write invalidates `x` reference
        uninit.as_mut_slice()[0].write(String::from("nonononono"));

        // Read invalidated reference to trigger UB
        let _ = &*x;
    }

    #[test]
    fn maybeuninit_array() {
        let mut arc: Arc<[MaybeUninit<_>]> = Arc::new_uninit_slice(5);
        assert!(arc.is_unique());
        #[allow(deprecated)]
        for (uninit, index) in arc.as_mut_slice().iter_mut().zip(0..5) {
            let ptr = uninit.as_mut_ptr();
            unsafe { core::ptr::write(ptr, index) };
        }

        let arc = unsafe { arc.assume_init() };
        assert!(arc.is_unique());
        // Using clone to that the layout generated in new_uninit_slice is compatible
        // with ArcInner.
        let arcs = [
            arc.clone(),
            arc.clone(),
            arc.clone(),
            arc.clone(),
            arc.clone(),
        ];
        assert_eq!(6, Arc::count(&arc));
        // If the layout is not compatible, then the data might be corrupted.
        assert_eq!(*arc, [0, 1, 2, 3, 4]);

        // Drop the arcs and check the count and the content to
        // make sure it isn't corrupted.
        drop(arcs);
        assert!(arc.is_unique());
        assert_eq!(*arc, [0, 1, 2, 3, 4]);
    }

    #[test]
    fn roundtrip() {
        let arc: Arc<usize> = Arc::new(0usize);
        let ptr = Arc::into_raw(arc);
        unsafe {
            let _arc = Arc::from_raw(ptr);
        }
    }

    #[test]
    fn from_iterator_exact_size() {
        let arc = Arc::from_iter(Vec::from_iter(["ololo".to_owned(), "trololo".to_owned()]));
        assert_eq!(1, Arc::count(&arc));
        assert_eq!(["ololo".to_owned(), "trololo".to_owned()], *arc);
    }

    #[test]
    fn from_iterator_unknown_size() {
        let arc = Arc::from_iter(
            Vec::from_iter(["ololo".to_owned(), "trololo".to_owned()])
                .into_iter()
                // Filter is opaque to iterators, so the resulting iterator
                // will report lower bound of 0.
                .filter(|_| true),
        );
        assert_eq!(1, Arc::count(&arc));
        assert_eq!(["ololo".to_owned(), "trololo".to_owned()], *arc);
    }

    #[test]
    fn roundtrip_slice() {
        let arc = Arc::from(Vec::from_iter([17, 19]));
        let ptr = Arc::into_raw(arc);
        let arc = unsafe { Arc::from_raw_slice(ptr) };
        assert_eq!([17, 19], *arc);
        assert_eq!(1, Arc::count(&arc));
    }

    #[test]
    fn arc_eq_and_cmp() {
        [
            [("*", &b"AB"[..]), ("*", &b"ab"[..])],
            [("*", &b"AB"[..]), ("*", &b"a"[..])],
            [("*", &b"A"[..]), ("*", &b"ab"[..])],
            [("A", &b"*"[..]), ("a", &b"*"[..])],
            [("a", &b"*"[..]), ("A", &b"*"[..])],
            [("AB", &b"*"[..]), ("a", &b"*"[..])],
            [("A", &b"*"[..]), ("ab", &b"*"[..])],
        ]
        .iter()
        .for_each(|[lt @ (lh, ls), rt @ (rh, rs)]| {
            let l = Arc::from_header_and_slice(lh, ls);
            let r = Arc::from_header_and_slice(rh, rs);

            assert_eq!(l, l);
            assert_eq!(r, r);

            assert_ne!(l, r);
            assert_ne!(r, l);

            assert_eq!(l <= l, lt <= lt, "{lt:?} <= {lt:?}");
            assert_eq!(l >= l, lt >= lt, "{lt:?} >= {lt:?}");

            assert_eq!(l < l, lt < lt, "{lt:?} < {lt:?}");
            assert_eq!(l > l, lt > lt, "{lt:?} > {lt:?}");

            assert_eq!(r <= r, rt <= rt, "{rt:?} <= {rt:?}");
            assert_eq!(r >= r, rt >= rt, "{rt:?} >= {rt:?}");

            assert_eq!(r < r, rt < rt, "{rt:?} < {rt:?}");
            assert_eq!(r > r, rt > rt, "{rt:?} > {rt:?}");

            assert_eq!(l < r, lt < rt, "{lt:?} < {rt:?}");
            assert_eq!(r > l, rt > lt, "{rt:?} > {lt:?}");
        })
    }

    #[test]
    fn arc_eq_and_partial_cmp() {
        [
            [(0.0, &[0.0, 0.0][..]), (1.0, &[0.0, 0.0][..])],
            [(1.0, &[0.0, 0.0][..]), (0.0, &[0.0, 0.0][..])],
            [(0.0, &[0.0][..]), (0.0, &[0.0, 0.0][..])],
            [(0.0, &[0.0, 0.0][..]), (0.0, &[0.0][..])],
            [(0.0, &[1.0, 2.0][..]), (0.0, &[10.0, 20.0][..])],
        ]
        .iter()
        .for_each(|[lt @ (lh, ls), rt @ (rh, rs)]| {
            let l = Arc::from_header_and_slice(lh, ls);
            let r = Arc::from_header_and_slice(rh, rs);

            assert_eq!(l, l);
            assert_eq!(r, r);

            assert_ne!(l, r);
            assert_ne!(r, l);

            assert_eq!(l <= l, lt <= lt, "{lt:?} <= {lt:?}");
            assert_eq!(l >= l, lt >= lt, "{lt:?} >= {lt:?}");

            assert_eq!(l < l, lt < lt, "{lt:?} < {lt:?}");
            assert_eq!(l > l, lt > lt, "{lt:?} > {lt:?}");

            assert_eq!(r <= r, rt <= rt, "{rt:?} <= {rt:?}");
            assert_eq!(r >= r, rt >= rt, "{rt:?} >= {rt:?}");

            assert_eq!(r < r, rt < rt, "{rt:?} < {rt:?}");
            assert_eq!(r > r, rt > rt, "{rt:?} > {rt:?}");

            assert_eq!(l < r, lt < rt, "{lt:?} < {rt:?}");
            assert_eq!(r > l, rt > lt, "{rt:?} > {lt:?}");
        })
    }

    #[allow(dead_code)]
    const fn is_partial_ord<T: ?Sized + PartialOrd>() {}

    #[allow(dead_code)]
    const fn is_ord<T: ?Sized + Ord>() {}

    // compile-time check that PartialOrd/Ord is correctly derived
    const _: () = is_partial_ord::<Arc<f64>>();
    const _: () = is_ord::<Arc<u64>>();
}