tract_hir/ops/array/
flatten.rs1use crate::infer::*;
2use crate::internal::*;
3
4#[derive(Debug, Clone, new, Default, Hash)]
5pub struct Flatten {
6 pub axis: i64,
7}
8
9impl Flatten {
10 pub fn compute_shape<D: DimLike>(&self, shape: &[D]) -> TractResult<[D; 2]> {
11 if shape.iter().filter(|d| d.to_usize().is_err()).count() > 1 {
12 bail!("Can not compute a shape with square of symbols")
13 }
14 let axis = if self.axis >= 0 { self.axis } else { self.axis + shape.len() as i64 } as usize;
15 Ok([shape[..axis].iter().cloned().product::<D>(), shape[axis..].iter().cloned().product()])
16 }
17}
18
19impl Expansion for Flatten {
20 fn name(&self) -> StaticName {
21 "Flatten".into()
22 }
23
24 fn rules<'r, 'p: 'r, 's: 'r>(
25 &'s self,
26 s: &mut Solver<'r>,
27 inputs: &'p [TensorProxy],
28 outputs: &'p [TensorProxy],
29 ) -> InferenceResult {
30 s.equals(&outputs[0].datum_type, &inputs[0].datum_type)?;
31 s.given(&inputs[0].shape, move |s, shape| {
32 let [shape_0, shape_1] = self.compute_shape(&shape)?;
33 s.equals(&outputs[0].shape, ShapeFactoid::from(vec![shape_0, shape_1]))
34 })
35 }
36
37 fn wire(
38 &self,
39 prefix: &str,
40 model: &mut TypedModel,
41 inputs: &[OutletId],
42 ) -> TractResult<TVec<OutletId>> {
43 let input_shape = model.outlet_fact(inputs[0])?.shape.to_tvec();
44 let output_shape = self.compute_shape(&input_shape)?;
45 let mut wire = tvec!(inputs[0]);
46 for (ix, op) in
47 tract_core::ops::change_axes::to_axis_ops_with_tf_rules(&input_shape, &output_shape)?
48 .into_iter()
49 .enumerate()
50 {
51 wire = model.wire_node(format!("{prefix}.{ix}"), op, &wire)?;
52 }
53 Ok(wire)
54 }
55}