1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
use crate::infer::*; use crate::internal::*; pub use tract_core::ops::matmul::MatMul; pub use tract_core::ops::quant::QParams; #[derive(Debug, Clone, Default, Hash)] pub struct MatMulInference { pub a_trans: bool, pub b_trans: bool, pub c_trans: bool, pub q_params: Option<QParams>, } impl_dyn_hash!(MatMulInference); impl MatMulInference { pub fn with_a_trans(self, a_trans: bool) -> MatMulInference { MatMulInference { a_trans, ..self } } pub fn with_b_trans(self, b_trans: bool) -> MatMulInference { MatMulInference { b_trans, ..self } } pub fn with_c_trans(self, c_trans: bool) -> MatMulInference { MatMulInference { c_trans, ..self } } pub fn with_q_params(self, q_params: QParams) -> MatMulInference { MatMulInference { q_params: Some(q_params), ..self } } } impl Expansion for MatMulInference { fn name(&self) -> Cow<str> { "MatMulInference".into() } op_hir!(); fn rules<'r, 'p: 'r, 's: 'r>( &'s self, s: &mut Solver<'r>, inputs: &'p [TensorProxy], outputs: &'p [TensorProxy], ) -> InferenceResult { check_input_arity(&inputs, 2)?; check_output_arity(&outputs, 1)?; s.equals(&inputs[0].datum_type, &inputs[1].datum_type)?; if let Some(qp) = &self.q_params { s.equals(&outputs[0].datum_type, &qp.c_datum_type)?; } else { s.equals(&inputs[0].datum_type, &outputs[0].datum_type)?; } s.given_2(&inputs[0].shape, &inputs[1].shape, move |s, ashape, bshape| { let (_, _, _, cshape) = compute_shapes(ashape, bshape, self.a_trans, self.b_trans, self.c_trans)?; s.equals(&outputs[0].shape, cshape) })?; Ok(()) } fn wire( &self, prefix: &str, target: &mut TypedModel, inputs: &[OutletId], ) -> TractResult<TVec<OutletId>> { let inputs = crate::ops::binary::wire_rank_broadcast(prefix, target, inputs)?; target.wire_node( prefix, tract_core::ops::matmul::MatMul { a_trans: self.a_trans, b_trans: self.b_trans, c_trans: self.c_trans, q_params: self.q_params.clone(), }, &inputs, ) } } pub fn compute_shapes<D: DimLike>( ashape_orig: TVec<D>, bshape_orig: TVec<D>, a_trans: bool, b_trans: bool, c_trans: bool, ) -> TractResult<(TVec<D>, TVec<D>, TVec<D>, TVec<D>)> { let mut ashape = ashape_orig.clone(); let mut bshape = bshape_orig.clone(); let mut implicit_m = false; let mut implicit_n = false; if ashape.len() < 2 { implicit_m = true; ashape.insert(a_trans as usize, D::one()); } if bshape.len() < 2 { implicit_n = true; bshape.insert(!b_trans as usize, D::one()); } while ashape.len() < bshape.len() { ashape.insert(0, D::one()); } while bshape.len() < ashape.len() { bshape.insert(0, D::one()); } let c_bc_shape_prefix = tract_core::broadcast::multi_broadcast(&[ &ashape[..(ashape.len() - 2)], &bshape[..(bshape.len() - 2)], ]) .ok_or_else(|| format_err!("Could not broadcast"))?; let mut c_bc_shape: TVec<D> = c_bc_shape_prefix.clone(); let (mut m, mut ka) = (ashape[ashape.len() - 2].clone(), ashape[ashape.len() - 1].clone()); let (mut kb, mut n) = (bshape[bshape.len() - 2].clone(), bshape[bshape.len() - 1].clone()); if a_trans { std::mem::swap(&mut m, &mut ka); } if b_trans { std::mem::swap(&mut kb, &mut n); } if ka != kb { bail!( "Inconsistent matmul: a: {:?} b: {:?}, a_trans: {} b_trans: {} c_trans: {}", ashape, bshape, a_trans, b_trans, c_trans ); } let mut c_shape_final = c_bc_shape.clone(); if c_trans { c_bc_shape.push(n.clone()); c_bc_shape.push(m.clone()); if !implicit_n { c_shape_final.push(n.clone()); } if !implicit_m { c_shape_final.push(m.clone()); } } else { c_bc_shape.push(m.clone()); c_bc_shape.push(n.clone()); if !implicit_m { c_shape_final.push(m.clone()); } if !implicit_n { c_shape_final.push(n.clone()); } } Ok((ashape, bshape, c_bc_shape, c_shape_final)) }