1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
use crate::internal::*; use crate::ops; use ndarray::prelude::*; mod array; mod conv; mod scan; #[derive(Debug, Clone, new, Default, PartialEq)] pub struct Downsample { axis: usize, stride: usize, modulo: usize, } impl Downsample { fn eval_t<T: Datum>(&self, input: &Tensor) -> TractResult<Arc<Tensor>> { let input = input.to_array_view::<T>()?; let sampled = if self.modulo < input.shape()[self.axis] { input .slice_axis( Axis(self.axis), ndarray::Slice::new(self.modulo as isize, None, self.stride as isize), ) .to_owned() .into_arc_tensor() } else { let mut shape = input.shape().to_vec(); shape[self.axis] = 0; unsafe { Tensor::uninitialized::<T>(&shape)?.into_arc_tensor() } }; Ok(sampled) } pub(crate) fn transform_dim(&self, input_dim: &TDim) -> TDim { (input_dim.clone() - self.modulo).div_ceil(self.stride.into()) } pub(crate) fn transform_fact(&self, input_fact: &TypedFact) -> TractResult<TypedFact> { let mut downed = input_fact.clone(); let down_len = self.transform_dim(&input_fact.shape.dim(self.axis)); downed.shape.set_dim(self.axis, down_len.clone())?; Ok(downed) } } impl Op for Downsample { fn name(&self) -> Cow<str> { "Downsample".into() } fn info(&self) -> TractResult<Vec<String>> { Ok(vec![format!("axis:{} stride:{} modulo:{}", self.axis, self.stride, self.modulo)]) } impl_op_same_as!(); op_as_typed_op!(); op_as_pulsed_op!(); } impl StatelessOp for Downsample { fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> { let input = args_1!(inputs); Ok(tvec!(dispatch_datum!(Self::eval_t(input.datum_type())(self, &*input))?)) } } impl InferenceRulesOp for Downsample { fn rules<'r, 'p: 'r, 's: 'r>( &'s self, s: &mut Solver<'r>, inputs: &'p [TensorProxy], outputs: &'p [TensorProxy], ) -> InferenceResult { check_input_arity(&inputs, 1)?; check_output_arity(&outputs, 1)?; s.equals(&inputs[0].rank, &outputs[0].rank)?; s.equals(&inputs[0].datum_type, &outputs[0].datum_type)?; s.given(&inputs[0].rank, move |s, r| { for i in 0..(r as usize) { if i == self.axis { s.given(&inputs[0].shape[i], move |s, d| { s.equals( &outputs[0].shape[i], (d - self.modulo).div_ceil(self.stride.to_dim()), ) })? } else { s.equals(&inputs[0].shape[i], &outputs[0].shape[i])? } } Ok(()) }) } inference_op_as_op!(); to_typed!(); } impl TypedOp for Downsample { fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> { let mut downed = inputs[0].clone(); let down_len = self.transform_dim(&downed.shape.dim(self.axis)); downed.shape.set_dim(self.axis, down_len.clone())?; Ok(tvec!(downed)) } fn declutter( &self, model: &TypedModel, node: &TypedNode, ) -> TractResult<Option<TypedModelPatch>> { if self.stride == 1 { return Ok(Some(TypedModelPatch::shunt_one_op(model, node)?)); } pull_downsample_up(model, node) } fn pulsify( &self, _source: &NormalizedModel, node: &NormalizedNode, target: &mut PulsedModel, mapping: &HashMap<OutletId, OutletId>, _pulse: usize, ) -> TractResult<TVec<OutletId>> { let input = mapping[&node.inputs[0]]; let pulse = target.outlet_fact(input)?.pulse(); if pulse % self.stride != 0 { bail!("Pulsificaton requires pulse to be a stride multiple") } target.wire_node(&*node.name, self.clone(), &[input]) } typed_op_as_op!(); } impl PulsedOp for Downsample { fn pulsed_output_facts(&self, inputs: &[&PulsedFact]) -> TractResult<TVec<PulsedFact>> { let mut fact = inputs[0].clone(); fact.shape[self.axis] /= self.stride; fact.dim = fact.dim.div_ceil(self.stride.to_dim()); Ok(tvec!(fact)) } pulsed_op_as_op!(); pulsed_op_to_typed_op!(); } fn pull_downsample_up( model: &TypedModel, down_node: &TypedNode, ) -> TractResult<Option<TypedModelPatch>> { let down_op = down_node.op_as::<Downsample>().unwrap(); if let Some(prec) = model.single_prec(down_node.id)? { let invariants = prec.op.axes_info(model, prec)?; debug!("Consider pull {:?} over {:?} (invariants: {:?})", down_op, prec, invariants); if let Some(above_axis) = invariants.unary_track_axis_up(down_op.axis, true) { let mut patch = TypedModelPatch::default(); let mut inputs = vec![]; for (ix, &oo) in prec.inputs.iter().enumerate() { let source = patch.tap_model(model, oo)?; let mut op = down_op.clone(); op.axis = above_axis; let ds = patch.wire_node(format!("{}-{}", prec.name, ix), op, [source].as_ref())?; inputs.push(ds[0]); } let other = patch.wire_node(&*prec.name, prec.op.clone(), &*inputs)?; patch.shunt_outside(OutletId::new(down_node.id, 0), other[0])?; return Ok(Some(patch)); } else if let Some(crop_op) = prec.op_as::<ops::array::Slice<TDim>>() { return array::pull_downsample_over_slice(model, prec, crop_op, down_node, down_op); } else if let Some(crop_op) = prec.op_as::<ops::array::Slice<usize>>() { return array::pull_downsample_over_slice(model, prec, crop_op, down_node, down_op); } else if let Some(other_op) = prec.op_as::<ops::array::RmDims>() { return array::pull_downsample_over_rmdims(model, prec, other_op, down_node, down_op); } else if let Some(other_op) = prec.op_as::<ops::array::AddDims>() { return array::pull_downsample_over_adddims(model, prec, other_op, down_node, down_op); } else if let Some(conv_op) = prec.op_as::<ops::cnn::conv::ConvUnary>() { return conv::fuse_downsample_into_conv(model, prec, conv_op, down_node, down_op); } else if let Some(other_op) = prec.op_as::<ops::scan::Typed>() { return scan::pull_downsample_over_scan(model, prec, other_op, down_node, down_op); } } Ok(None) }