1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
use super::*;
use crossbeam::sync::ShardedLock;
use hdrhistogram::SyncHistogram;
use indexmap::IndexMap;
use slab::Slab;
use std::cell::RefCell;
use std::hash::Hash;
use std::sync::atomic;

thread_local! {
    static SPAN: RefCell<Vec<span::Id>> = RefCell::new(Vec::new());
}

/// Timing-gathering tracing subscriber.
///
/// This type is constructed using a [`Builder`].
///
/// See the [crate-level docs] for details.
///
///   [crate-level docs]: ../
pub struct TimingSubscriber<S = group::ByName, E = group::ByMessage>
where
    S: SpanGroup,
    E: EventGroup,
    S::Id: Hash + Eq,
    E::Id: Hash + Eq,
{
    spans: ShardedLock<Slab<SpanGroupContext<S::Id>>>,
    timing: Timing<S, E>,
}

impl<S, E> std::fmt::Debug for TimingSubscriber<S, E>
where
    S: SpanGroup + std::fmt::Debug,
    S::Id: Hash + Eq + std::fmt::Debug,
    E: EventGroup + std::fmt::Debug,
    E::Id: Hash + Eq + std::fmt::Debug,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("TimingSubscriber")
            .field("spans", &self.spans)
            .field("timing", &self.timing)
            .finish()
    }
}

#[derive(Debug)]
struct SpanGroupContext<S> {
    parent: Option<span::Id>,
    follows: Option<span::Id>,
    meta: &'static Metadata<'static>,
    state: SpanState<S>,

    // how many references are there to each span id?
    // needed so we know when to reclaim
    refcount: atomic::AtomicUsize,
}

impl<S, E> TimingSubscriber<S, E>
where
    S: SpanGroup,
    E: EventGroup,
    S::Id: Hash + Eq,
    E::Id: Hash + Eq,
{
    pub(crate) fn new(timing: Timing<S, E>) -> Self {
        Self {
            timing,
            spans: Default::default(),
        }
    }

    /// Force all current timing information to be refreshed immediately.
    ///
    /// Note that this will interrupt all concurrent metrics gathering until it returns.
    pub fn force_synchronize(&self) {
        self.timing.force_synchronize()
    }

    /// Access the timing histograms.
    ///
    /// Be aware that the contained histograms are not automatically updated to reflect recently
    /// gathered samples. For each histogram you wish to read from, you must call `refresh` or
    /// `refresh_timeout` or `force_synchronize` to gather up-to-date samples.
    ///
    /// For information about what you can do with the histograms, see the [`hdrhistogram`
    /// documentation].
    ///
    ///   [`hdrhistogram` documentation]: https://docs.rs/hdrhistogram/
    pub fn with_histograms<F, R>(&self, f: F) -> R
    where
        F: FnOnce(&mut HashMap<S::Id, IndexMap<E::Id, SyncHistogram<u64>, Hasher>>) -> R,
    {
        self.timing.with_histograms(f)
    }
}

impl<S, E> Subscriber for TimingSubscriber<S, E>
where
    S: SpanGroup + 'static,
    E: EventGroup + 'static,
    S::Id: Clone + Hash + Eq + 'static,
    E::Id: Clone + Hash + Eq + 'static,
{
    fn enabled(&self, _: &Metadata) -> bool {
        // NOTE: we override this just because we have to. for filtering, use Layer
        true
    }

    fn new_span(&self, span: &span::Attributes) -> span::Id {
        let group = self.timing.span_group.group(span);
        let parent = span
            .parent()
            .cloned()
            .or_else(|| SPAN.with(|current_span| current_span.borrow().last().cloned()));

        let sg = SpanGroupContext {
            parent,
            follows: None,
            meta: span.metadata(),
            refcount: atomic::AtomicUsize::new(1),
            state: SpanState {
                group: group.clone(),
                last_event: atomic::AtomicU64::new(self.timing.time.raw()),
            },
        };

        let id = {
            let mut inner = self.spans.write().unwrap();
            inner.insert(sg)
        };

        self.timing.ensure_group(group);
        span::Id::from_u64(id as u64 + 1)
    }

    fn record(&self, _: &span::Id, _: &span::Record) {}

    fn record_follows_from(&self, span: &span::Id, follows: &span::Id) {
        let mut inner = self.spans.write().unwrap();
        inner.get_mut(span_id_to_slab_idx(span)).unwrap().follows = Some(follows.clone());
    }

    fn event(&self, event: &Event) {
        let span = event.parent().cloned().or_else(|| {
            SPAN.with(|current_span| {
                let current_span = current_span.borrow();
                current_span.last().cloned()
            })
        });
        if let Some(span) = span {
            let inner = self.spans.read().unwrap();
            let inner = &*inner;
            self.timing.time(event, |on_each| {
                let mut current = Some(span.clone());
                while let Some(ref at) = current {
                    let idx = span_id_to_slab_idx(&at);
                    let span = &inner[idx];
                    if !on_each(&span.state) {
                        break;
                    }
                    current = span.parent.clone();
                }
            });
        } else {
            // recorded free-standing event -- ignoring
        }
    }

    fn enter(&self, span: &span::Id) {
        SPAN.with(|current_span| {
            current_span.borrow_mut().push(span.clone());
        })
    }

    fn exit(&self, span: &span::Id) {
        // we are guaranteed that on any given thread, spans are exited in reverse order
        SPAN.with(|current_span| {
            let leaving = current_span
                .borrow_mut()
                .pop()
                .expect("told to exit span when not in span");
            assert_eq!(
                &leaving, span,
                "told to exit span that was not most recently entered"
            );
        })
    }

    fn clone_span(&self, span: &span::Id) -> span::Id {
        let inner = self.spans.read().unwrap();
        inner[span_id_to_slab_idx(span)]
            .refcount
            .fetch_add(1, atomic::Ordering::AcqRel);
        span.clone()
    }

    fn try_close(&self, span: span::Id) -> bool {
        macro_rules! unwinding_lock {
            ($lock:expr) => {
                match $lock {
                    Ok(g) => g,
                    Err(_) if std::thread::panicking() => {
                        // we're trying to take the span lock while panicking
                        // the lock is poisoned, so the writer state is corrupt
                        // so we might as well just return -- nothing more we can do
                        return false;
                    }
                    r @ Err(_) => r.unwrap(),
                }
            };
        }

        if 1 == unwinding_lock!(self.spans.read())[span_id_to_slab_idx(&span)]
            .refcount
            .fetch_sub(1, atomic::Ordering::AcqRel)
        {
            // span has ended!
            if self.timing.span_close_events {
                // record a span-end event
                let inner = unwinding_lock!(self.spans.read());
                if let Some(span_info) = inner.get(span_id_to_slab_idx(&span)) {
                    let meta = span_info.meta;
                    let fs = field::FieldSet::new(&["message"], meta.callsite());
                    let fld = fs.iter().next().unwrap();
                    let v = [(&fld, Some(&"close" as &dyn field::Value))];
                    let vs = fs.value_set(&v);
                    let e = Event::new_child_of(span.clone(), meta, &vs);
                    self.event(&e);
                }
            }

            // reclaim the span's id
            let mut inner = unwinding_lock!(self.spans.write());
            inner.remove(span_id_to_slab_idx(&span));
            // we _keep_ the entry in inner.recorders in place, since it may be used by other spans
            true
        } else {
            false
        }
    }

    fn current_span(&self) -> span::Current {
        SPAN.with(|current_span| {
            current_span.borrow_mut().last().map(|sid| {
                span::Current::new(
                    sid.clone(),
                    self.spans.read().unwrap()[span_id_to_slab_idx(sid)].meta,
                )
            })
        })
        .unwrap_or_else(span::Current::none)
    }
}

/// A convenience type for getting access to [`TimingSubscriber`] through a `Dispatch`.
///
/// See [`TimingSubscriber::downcaster`].
#[derive(Debug, Copy)]
pub struct Downcaster<S, E> {
    phantom: PhantomData<fn(S, E)>,
}

impl<S, E> Clone for Downcaster<S, E> {
    fn clone(&self) -> Self {
        Self {
            phantom: PhantomData,
        }
    }
}

impl<S, E> TimingSubscriber<S, E>
where
    S: SpanGroup,
    E: EventGroup,
    S::Id: Clone + Hash + Eq,
    E::Id: Clone + Hash + Eq,
{
    /// Returns an identifier that can later be used to get access to this [`TimingSubscriber`]
    /// after it has been turned into a `tracing::Dispatch`.
    ///
    /// ```rust
    /// use tracing::*;
    /// use tracing_timing::{Builder, Histogram, TimingSubscriber};
    /// let subscriber = Builder::default().build(|| Histogram::new_with_max(1_000_000, 2).unwrap());
    /// let downcaster = subscriber.downcaster();
    /// let dispatch = Dispatch::new(subscriber);
    /// // ...
    /// // code that hands off clones of the dispatch
    /// // maybe to other threads
    /// // ...
    /// downcaster.downcast(&dispatch).unwrap().with_histograms(|hs| {
    ///     for (span_group, hs) in hs {
    ///         for (event_group, h) in hs {
    ///             // make sure we see the latest samples:
    ///             h.refresh();
    ///             // print the median:
    ///             println!("{} -> {}: {}ns", span_group, event_group, h.value_at_quantile(0.5))
    ///         }
    ///     }
    /// });
    /// ```
    ///
    pub fn downcaster(&self) -> Downcaster<S, E> {
        Downcaster {
            phantom: PhantomData,
        }
    }
}

impl<S, E> Downcaster<S, E>
where
    S: SpanGroup + 'static,
    E: EventGroup + 'static,
    S::Id: Clone + Hash + Eq + 'static,
    E::Id: Clone + Hash + Eq + 'static,
{
    /// Retrieve a reference to this ident's original [`TimingSubscriber`].
    ///
    /// This method returns `None` if the given `Dispatch` is not holding a subscriber of the same
    /// type as this ident was created from.
    pub fn downcast<'a>(&self, d: &'a Dispatch) -> Option<&'a TimingSubscriber<S, E>> {
        d.downcast_ref()
    }
}