1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
//! A procedural macro attribute for instrumenting functions with [`tracing`].
//!
//! [`tracing`] is a framework for instrumenting Rust programs to collect
//! structured, event-based diagnostic information. This crate provides the
//! [`#[instrument]`][instrument] procedural macro attribute.
//!
//! Note that this macro is also re-exported by the main `tracing` crate.
//!
//! *Compiler support: [requires `rustc` 1.40+][msrv]*
//!
//! [msrv]: #supported-rust-versions
//!
//! ## Usage
//!
//! First, add this to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! tracing-attributes = "0.1.11"
//! ```
//!
//! The [`#[instrument]`][instrument] attribute can now be added to a function
//! to automatically create and enter `tracing` [span] when that function is
//! called. For example:
//!
//! ```
//! use tracing_attributes::instrument;
//!
//! #[instrument]
//! pub fn my_function(my_arg: usize) {
//!     // ...
//! }
//!
//! # fn main() {}
//! ```
//!
//! [`tracing`]: https://crates.io/crates/tracing
//! [span]: https://docs.rs/tracing/latest/tracing/span/index.html
//! [instrument]: attr.instrument.html
//!
//! ## Supported Rust Versions
//!
//! Tracing is built against the latest stable release. The minimum supported
//! version is 1.40. The current Tracing version is not guaranteed to build on
//! Rust versions earlier than the minimum supported version.
//!
//! Tracing follows the same compiler support policies as the rest of the Tokio
//! project. The current stable Rust compiler and the three most recent minor
//! versions before it will always be supported. For example, if the current
//! stable compiler version is 1.45, the minimum supported version will not be
//! increased past 1.42, three minor versions prior. Increasing the minimum
//! supported compiler version is not considered a semver breaking change as
//! long as doing so complies with this policy.
//!
#![doc(html_root_url = "https://docs.rs/tracing-attributes/0.1.11")]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/tokio-rs/tracing/master/assets/logo.svg",
    issue_tracker_base_url = "https://github.com/tokio-rs/tracing/issues/"
)]
#![warn(
    missing_debug_implementations,
    missing_docs,
    rust_2018_idioms,
    unreachable_pub,
    bad_style,
    const_err,
    dead_code,
    improper_ctypes,
    non_shorthand_field_patterns,
    no_mangle_generic_items,
    overflowing_literals,
    path_statements,
    patterns_in_fns_without_body,
    private_in_public,
    unconditional_recursion,
    unused,
    unused_allocation,
    unused_comparisons,
    unused_parens,
    while_true
)]
// TODO: once `tracing` bumps its MSRV to 1.42, remove this allow.
#![allow(unused)]
extern crate proc_macro;

use std::collections::{HashMap, HashSet};
use std::iter;

use proc_macro2::TokenStream;
use quote::{quote, quote_spanned, ToTokens, TokenStreamExt as _};
use syn::ext::IdentExt as _;
use syn::parse::{Parse, ParseStream};
use syn::{
    punctuated::Punctuated, spanned::Spanned, AttributeArgs, Block, Expr, ExprCall, FieldPat,
    FnArg, Ident, Item, ItemFn, Lit, LitInt, LitStr, Meta, MetaList, MetaNameValue, NestedMeta,
    Pat, PatIdent, PatReference, PatStruct, PatTuple, PatTupleStruct, PatType, Path, Signature,
    Stmt, Token,
};
/// Instruments a function to create and enter a `tracing` [span] every time
/// the function is called.
///
/// The generated span's name will be the name of the function. Any arguments
/// to that function will be recorded as fields using [`fmt::Debug`]. To skip
/// recording a function's or method's argument, pass the argument's name
/// to the `skip` argument on the `#[instrument]` macro. For example,
/// `skip` can be used when an argument to an instrumented function does
/// not implement [`fmt::Debug`], or to exclude an argument with a verbose
/// or costly Debug implementation. Note that:
/// - multiple argument names can be passed to `skip`.
/// - arguments passed to `skip` do _not_ need to implement `fmt::Debug`.
///
/// You can also pass additional fields (key-value pairs with arbitrary data)
/// to the generated span. This is achieved using the `fields` argument on the
/// `#[instrument]` macro. You can use a string, integer or boolean literal as
/// a value for each field. The name of the field must be a single valid Rust
/// identifier, nested (dotted) field names are not supported.
///
/// Note that overlap between the names of fields and (non-skipped) arguments
/// will result in a compile error.
///
/// # Examples
/// Instrumenting a function:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument]
/// pub fn my_function(my_arg: usize) {
///     // This event will be recorded inside a span named `my_function` with the
///     // field `my_arg`.
///     tracing::info!("inside my_function!");
///     // ...
/// }
/// ```
/// Setting the level for the generated span:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(level = "debug")]
/// pub fn my_function() {
///     // ...
/// }
/// ```
/// Overriding the generated span's name:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(name = "my_name")]
/// pub fn my_function() {
///     // ...
/// }
/// ```
/// Overriding the generated span's target:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(target = "my_target")]
/// pub fn my_function() {
///     // ...
/// }
/// ```
///
/// To skip recording an argument, pass the argument's name to the `skip`:
///
/// ```
/// # use tracing_attributes::instrument;
/// struct NonDebug;
///
/// #[instrument(skip(non_debug))]
/// fn my_function(arg: usize, non_debug: NonDebug) {
///     // ...
/// }
/// ```
///
/// To add an additional context to the span, you can pass key-value pairs to `fields`:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(fields(foo="bar", id=1, show=true))]
/// fn my_function(arg: usize) {
///     // ...
/// }
/// ```
///
/// If the function returns a `Result<T, E>` and `E` implements `std::fmt::Display`, you can add
/// `err` to emit error events when the function returns `Err`:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(err)]
/// fn my_function(arg: usize) -> Result<(), std::io::Error> {
///     Ok(())
/// }
/// ```
///
/// If `tracing_futures` is specified as a dependency in `Cargo.toml`,
/// `async fn`s may also be instrumented:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument]
/// pub async fn my_function() -> Result<(), ()> {
///     // ...
///     # Ok(())
/// }
/// ```
///
/// It also works with [async-trait](https://crates.io/crates/async-trait)
/// (a crate that allows defining async functions in traits,
/// something not currently possible in Rust),
/// and hopefully most libraries that exhibit similar behaviors:
///
/// ```
/// # use tracing::instrument;
/// use async_trait::async_trait;
///
/// #[async_trait]
/// pub trait Foo {
///     async fn foo(&self, arg: usize);
/// }
///
/// #[derive(Debug)]
/// struct FooImpl(usize);
///
/// #[async_trait]
/// impl Foo for FooImpl {
///     #[instrument(fields(value = self.0, tmp = std::any::type_name::<Self>()))]
///     async fn foo(&self, arg: usize) {}
/// }
/// ```
///
/// An interesting note on this subject is that references to the `Self`
/// type inside the `fields` argument are only allowed when the instrumented
/// function is a method aka. the function receives `self` as an argument.
/// For example, this *will not work* because it doesn't receive `self`:
/// ```compile_fail
/// # use tracing::instrument;
/// use async_trait::async_trait;
///
/// #[async_trait]
/// pub trait Bar {
///     async fn bar();
/// }
///
/// #[derive(Debug)]
/// struct BarImpl(usize);
///
/// #[async_trait]
/// impl Bar for BarImpl {
///     #[instrument(fields(tmp = std::any::type_name::<Self>()))]
///     async fn bar() {}
/// }
/// ```
/// Instead, you should manually rewrite any `Self` types as the type for
/// which you implement the trait: `#[instrument(fields(tmp = std::any::type_name::<Bar>()))]`.

///
/// [span]: https://docs.rs/tracing/latest/tracing/span/index.html
/// [`tracing`]: https://github.com/tokio-rs/tracing
/// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
#[proc_macro_attribute]
pub fn instrument(
    args: proc_macro::TokenStream,
    item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let input: ItemFn = syn::parse_macro_input!(item as ItemFn);
    let args = syn::parse_macro_input!(args as InstrumentArgs);

    let instrumented_function_name = input.sig.ident.to_string();

    // check for async_trait-like patterns in the block and wrap the
    // internal function with Instrument instead of wrapping the
    // async_trait generated wrapper
    if let Some(internal_fun) = get_async_trait_info(&input.block, input.sig.asyncness.is_some()) {
        // let's rewrite some statements!
        let mut stmts: Vec<Stmt> = input.block.stmts.to_vec();
        for stmt in &mut stmts {
            if let Stmt::Item(Item::Fn(fun)) = stmt {
                // instrument the function if we considered it as the one we truly want to trace
                if fun.sig.ident == internal_fun.name {
                    *stmt = syn::parse2(gen_body(
                        fun,
                        args,
                        instrumented_function_name,
                        Some(internal_fun),
                    ))
                    .unwrap();
                    break;
                }
            }
        }

        let sig = &input.sig;
        let attrs = &input.attrs;
        quote!(
            #(#attrs) *
            #sig {
                #(#stmts) *
            }
        )
        .into()
    } else {
        gen_body(&input, args, instrumented_function_name, None).into()
    }
}

fn gen_body(
    input: &ItemFn,
    mut args: InstrumentArgs,
    instrumented_function_name: String,
    async_trait_fun: Option<AsyncTraitInfo>,
) -> proc_macro2::TokenStream {
    // these are needed ahead of time, as ItemFn contains the function body _and_
    // isn't representable inside a quote!/quote_spanned! macro
    // (Syn's ToTokens isn't implemented for ItemFn)
    let ItemFn {
        attrs,
        vis,
        block,
        sig,
        ..
    } = input;

    let Signature {
        output: return_type,
        inputs: params,
        unsafety,
        asyncness,
        constness,
        abi,
        ident,
        generics:
            syn::Generics {
                params: gen_params,
                where_clause,
                ..
            },
        ..
    } = sig;

    let err = args.err;
    let warnings = args.warnings();

    // generate the span's name
    let span_name = args
        // did the user override the span's name?
        .name
        .as_ref()
        .map(|name| quote!(#name))
        .unwrap_or_else(|| quote!(#instrumented_function_name));

    // generate this inside a closure, so we can return early on errors.
    let span = (|| {
        // Pull out the arguments-to-be-skipped first, so we can filter results
        // below.
        let param_names: Vec<(Ident, Ident)> = params
            .clone()
            .into_iter()
            .flat_map(|param| match param {
                FnArg::Typed(PatType { pat, .. }) => param_names(*pat),
                FnArg::Receiver(_) => Box::new(iter::once(Ident::new("self", param.span()))),
            })
            // Little dance with new (user-exposed) names and old (internal)
            // names of identifiers. That way, you can do the following
            // even though async_trait rewrite "self" as "_self":
            // ```
            // #[async_trait]
            // impl Foo for FooImpl {
            //     #[instrument(skip(self))]
            //     async fn foo(&self, v: usize) {}
            // }
            // ```
            .map(|x| {
                // if we are inside a function generated by async-trait, we
                // should take care to rewrite "_self" as "self" for
                // 'user convenience'
                if async_trait_fun.is_some() && x == "_self" {
                    (Ident::new("self", x.span()), x)
                } else {
                    (x.clone(), x)
                }
            })
            .collect();

        for skip in &args.skips {
            if !param_names.iter().map(|(user, _)| user).any(|y| y == skip) {
                return quote_spanned! {skip.span()=>
                    compile_error!("attempting to skip non-existent parameter")
                };
            }
        }

        let level = args.level();
        let target = args.target();

        // filter out skipped fields
        let mut quoted_fields: Vec<_> = param_names
            .into_iter()
            .filter(|(param, _)| {
                if args.skips.contains(param) {
                    return false;
                }

                // If any parameters have the same name as a custom field, skip
                // and allow them to be formatted by the custom field.
                if let Some(ref fields) = args.fields {
                    fields.0.iter().all(|Field { ref name, .. }| {
                        let first = name.first();
                        first != name.last() || !first.iter().any(|name| name == &param)
                    })
                } else {
                    true
                }
            })
            .map(|(user_name, real_name)| quote!(#user_name = tracing::field::debug(&#real_name)))
            .collect();

        // when async-trait is in use, replace instances of "self" with "_self" inside the fields values
        if let (Some(ref async_trait_fun), Some(Fields(ref mut fields))) =
            (async_trait_fun, &mut args.fields)
        {
            let mut replacer = SelfReplacer {
                ty: async_trait_fun.self_type.clone(),
            };
            for e in fields.iter_mut().filter_map(|f| f.value.as_mut()) {
                syn::visit_mut::visit_expr_mut(&mut replacer, e);
            }
        }

        let custom_fields = &args.fields;

        quote!(tracing::span!(
            target: #target,
            #level,
            #span_name,
            #(#quoted_fields,)*
            #custom_fields

        ))
    })();

    // Generate the instrumented function body.
    // If the function is an `async fn`, this will wrap it in an async block,
    // which is `instrument`ed using `tracing-futures`. Otherwise, this will
    // enter the span and then perform the rest of the body.
    // If `err` is in args, instrument any resulting `Err`s.
    let body = if asyncness.is_some() {
        if err {
            quote_spanned! {block.span()=>
                let __tracing_attr_span = #span;
                tracing_futures::Instrument::instrument(async move {
                    match async move { #block }.await {
                        Ok(x) => Ok(x),
                        Err(e) => {
                            tracing::error!(error = %e);
                            Err(e)
                        }
                    }
                }, __tracing_attr_span).await
            }
        } else {
            quote_spanned!(block.span()=>
                let __tracing_attr_span = #span;
                    tracing_futures::Instrument::instrument(
                        async move { #block },
                        __tracing_attr_span
                    )
                    .await
            )
        }
    } else if err {
        quote_spanned!(block.span()=>
            let __tracing_attr_span = #span;
            let __tracing_attr_guard = __tracing_attr_span.enter();
            match { #block } {
                Ok(x) => Ok(x),
                Err(e) => {
                    tracing::error!(error = %e);
                    Err(e)
                }
            }
        )
    } else {
        quote_spanned!(block.span()=>
            let __tracing_attr_span = #span;
            let __tracing_attr_guard = __tracing_attr_span.enter();
            #block
        )
    };

    quote!(
        #(#attrs) *
        #vis #constness #unsafety #asyncness #abi fn #ident<#gen_params>(#params) #return_type
        #where_clause
        {
            #warnings
            #body
        }
    )
}

#[derive(Default, Debug)]
struct InstrumentArgs {
    level: Option<Level>,
    name: Option<LitStr>,
    target: Option<LitStr>,
    skips: HashSet<Ident>,
    fields: Option<Fields>,
    err: bool,
    /// Errors describing any unrecognized parse inputs that we skipped.
    parse_warnings: Vec<syn::Error>,
}

impl InstrumentArgs {
    fn level(&self) -> impl ToTokens {
        fn is_level(lit: &LitInt, expected: u64) -> bool {
            match lit.base10_parse::<u64>() {
                Ok(value) => value == expected,
                Err(_) => false,
            }
        }

        match &self.level {
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("trace") => {
                quote!(tracing::Level::TRACE)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("debug") => {
                quote!(tracing::Level::DEBUG)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("info") => {
                quote!(tracing::Level::INFO)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("warn") => {
                quote!(tracing::Level::WARN)
            }
            Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("error") => {
                quote!(tracing::Level::ERROR)
            }
            Some(Level::Int(ref lit)) if is_level(lit, 1) => quote!(tracing::Level::TRACE),
            Some(Level::Int(ref lit)) if is_level(lit, 2) => quote!(tracing::Level::DEBUG),
            Some(Level::Int(ref lit)) if is_level(lit, 3) => quote!(tracing::Level::INFO),
            Some(Level::Int(ref lit)) if is_level(lit, 4) => quote!(tracing::Level::WARN),
            Some(Level::Int(ref lit)) if is_level(lit, 5) => quote!(tracing::Level::ERROR),
            Some(Level::Path(ref pat)) => quote!(#pat),
            Some(lit) => quote! {
                compile_error!(
                    "unknown verbosity level, expected one of \"trace\", \
                     \"debug\", \"info\", \"warn\", or \"error\", or a number 1-5"
                )
            },
            None => quote!(tracing::Level::INFO),
        }
    }

    fn target(&self) -> impl ToTokens {
        if let Some(ref target) = self.target {
            quote!(#target)
        } else {
            quote!(module_path!())
        }
    }

    /// Generate "deprecation" warnings for any unrecognized attribute inputs
    /// that we skipped.
    ///
    /// For backwards compatibility, we need to emit compiler warnings rather
    /// than errors for unrecognized inputs. Generating a fake deprecation is
    /// the only way to do this on stable Rust right now.
    fn warnings(&self) -> impl ToTokens {
        let warnings = self.parse_warnings.iter().map(|err| {
            let msg = format!("found unrecognized input, {}", err);
            let msg = LitStr::new(&msg, err.span());
            // TODO(eliza): This is a bit of a hack, but it's just about the
            // only way to emit warnings from a proc macro on stable Rust.
            // Eventually, when the `proc_macro::Diagnostic` API stabilizes, we
            // should definitely use that instead.
            quote_spanned! {err.span()=>
                #[warn(deprecated)]
                {
                    #[deprecated(since = "not actually deprecated", note = #msg)]
                    const TRACING_INSTRUMENT_WARNING: () = ();
                    let _ = TRACING_INSTRUMENT_WARNING;
                }
            }
        });
        quote! {
            { #(#warnings)* }
        }
    }
}

impl Parse for InstrumentArgs {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let mut args = Self::default();
        while !input.is_empty() {
            let lookahead = input.lookahead1();
            if lookahead.peek(kw::name) {
                if args.name.is_some() {
                    return Err(input.error("expected only a single `name` argument"));
                }
                let name = input.parse::<StrArg<kw::name>>()?.value;
                args.name = Some(name);
            } else if lookahead.peek(LitStr) {
                // XXX: apparently we support names as either named args with an
                // sign, _or_ as unnamed string literals. That's weird, but
                // changing it is apparently breaking.
                if args.name.is_some() {
                    return Err(input.error("expected only a single `name` argument"));
                }
                args.name = Some(input.parse()?);
            } else if lookahead.peek(kw::target) {
                if args.target.is_some() {
                    return Err(input.error("expected only a single `target` argument"));
                }
                let target = input.parse::<StrArg<kw::target>>()?.value;
                args.target = Some(target);
            } else if lookahead.peek(kw::level) {
                if args.level.is_some() {
                    return Err(input.error("expected only a single `level` argument"));
                }
                args.level = Some(input.parse()?);
            } else if lookahead.peek(kw::skip) {
                if !args.skips.is_empty() {
                    return Err(input.error("expected only a single `skip` argument"));
                }
                let Skips(skips) = input.parse()?;
                args.skips = skips;
            } else if lookahead.peek(kw::fields) {
                if args.fields.is_some() {
                    return Err(input.error("expected only a single `fields` argument"));
                }
                args.fields = Some(input.parse()?);
            } else if lookahead.peek(kw::err) {
                let _ = input.parse::<kw::err>()?;
                args.err = true;
            } else if lookahead.peek(Token![,]) {
                let _ = input.parse::<Token![,]>()?;
            } else {
                // We found a token that we didn't expect!
                // We want to emit warnings for these, rather than errors, so
                // we'll add it to the list of unrecognized inputs we've seen so
                // far and keep going.
                args.parse_warnings.push(lookahead.error());
                // Parse the unrecognized token tree to advance the parse
                // stream, and throw it away so we can keep parsing.
                let _ = input.parse::<proc_macro2::TokenTree>();
            }
        }
        Ok(args)
    }
}

struct StrArg<T> {
    value: LitStr,
    _p: std::marker::PhantomData<T>,
}

impl<T: Parse> Parse for StrArg<T> {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<T>()?;
        let _ = input.parse::<Token![=]>()?;
        let value = input.parse()?;
        Ok(Self {
            value,
            _p: std::marker::PhantomData,
        })
    }
}

struct Skips(HashSet<Ident>);

impl Parse for Skips {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<kw::skip>();
        let content;
        let _ = syn::parenthesized!(content in input);
        let names: Punctuated<Ident, Token![,]> = content.parse_terminated(Ident::parse_any)?;
        let mut skips = HashSet::new();
        for name in names {
            if skips.contains(&name) {
                return Err(syn::Error::new(
                    name.span(),
                    "tried to skip the same field twice",
                ));
            } else {
                skips.insert(name);
            }
        }
        Ok(Self(skips))
    }
}

#[derive(Debug)]
struct Fields(Punctuated<Field, Token![,]>);

#[derive(Debug)]
struct Field {
    name: Punctuated<Ident, Token![.]>,
    value: Option<Expr>,
    kind: FieldKind,
}

#[derive(Debug, Eq, PartialEq)]
enum FieldKind {
    Debug,
    Display,
    Value,
}

impl Parse for Fields {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<kw::fields>();
        let content;
        let _ = syn::parenthesized!(content in input);
        let fields: Punctuated<_, Token![,]> = content.parse_terminated(Field::parse)?;
        Ok(Self(fields))
    }
}

impl ToTokens for Fields {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        self.0.to_tokens(tokens)
    }
}

impl Parse for Field {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let mut kind = FieldKind::Value;
        if input.peek(Token![%]) {
            input.parse::<Token![%]>()?;
            kind = FieldKind::Display;
        } else if input.peek(Token![?]) {
            input.parse::<Token![?]>()?;
            kind = FieldKind::Debug;
        };
        let name = Punctuated::parse_separated_nonempty_with(input, Ident::parse_any)?;
        let value = if input.peek(Token![=]) {
            input.parse::<Token![=]>()?;
            if input.peek(Token![%]) {
                input.parse::<Token![%]>()?;
                kind = FieldKind::Display;
            } else if input.peek(Token![?]) {
                input.parse::<Token![?]>()?;
                kind = FieldKind::Debug;
            };
            Some(input.parse()?)
        } else {
            None
        };
        Ok(Self { name, kind, value })
    }
}

impl ToTokens for Field {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        if let Some(ref value) = self.value {
            let name = &self.name;
            let kind = &self.kind;
            tokens.extend(quote! {
                #name = #kind#value
            })
        } else if self.kind == FieldKind::Value {
            // XXX(eliza): I don't like that fields without values produce
            // empty fields rather than local variable shorthand...but,
            // we've released a version where field names without values in
            // `instrument` produce empty field values, so changing it now
            // is a breaking change. agh.
            let name = &self.name;
            tokens.extend(quote!(#name = tracing::field::Empty))
        } else {
            self.kind.to_tokens(tokens);
            self.name.to_tokens(tokens);
        }
    }
}

impl ToTokens for FieldKind {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        match self {
            FieldKind::Debug => tokens.extend(quote! { ? }),
            FieldKind::Display => tokens.extend(quote! { % }),
            _ => {}
        }
    }
}

#[derive(Debug)]
enum Level {
    Str(LitStr),
    Int(LitInt),
    Path(Path),
}

impl Parse for Level {
    fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
        let _ = input.parse::<kw::level>()?;
        let _ = input.parse::<Token![=]>()?;
        let lookahead = input.lookahead1();
        if lookahead.peek(LitStr) {
            Ok(Self::Str(input.parse()?))
        } else if lookahead.peek(LitInt) {
            Ok(Self::Int(input.parse()?))
        } else if lookahead.peek(Ident) {
            Ok(Self::Path(input.parse()?))
        } else {
            Err(lookahead.error())
        }
    }
}

fn param_names(pat: Pat) -> Box<dyn Iterator<Item = Ident>> {
    match pat {
        Pat::Ident(PatIdent { ident, .. }) => Box::new(iter::once(ident)),
        Pat::Reference(PatReference { pat, .. }) => param_names(*pat),
        Pat::Struct(PatStruct { fields, .. }) => Box::new(
            fields
                .into_iter()
                .flat_map(|FieldPat { pat, .. }| param_names(*pat)),
        ),
        Pat::Tuple(PatTuple { elems, .. }) => Box::new(elems.into_iter().flat_map(param_names)),
        Pat::TupleStruct(PatTupleStruct {
            pat: PatTuple { elems, .. },
            ..
        }) => Box::new(elems.into_iter().flat_map(param_names)),

        // The above *should* cover all cases of irrefutable patterns,
        // but we purposefully don't do any funny business here
        // (such as panicking) because that would obscure rustc's
        // much more informative error message.
        _ => Box::new(iter::empty()),
    }
}

mod kw {
    syn::custom_keyword!(fields);
    syn::custom_keyword!(skip);
    syn::custom_keyword!(level);
    syn::custom_keyword!(target);
    syn::custom_keyword!(name);
    syn::custom_keyword!(err);
}

// Get the AST of the inner function we need to hook, if it was generated
// by async-trait.
// When we are given a function annotated by async-trait, that function
// is only a placeholder that returns a pinned future containing the
// user logic, and it is that pinned future that needs to be instrumented.
// Were we to instrument its parent, we would only collect information
// regarding the allocation of that future, and not its own span of execution.
// So we inspect the block of the function to find if it matches the pattern
// `async fn foo<...>(...) {...}; Box::pin(foo<...>(...))` and we return
// the name `foo` if that is the case. 'gen_body' will then be able
// to use that information to instrument the proper function.
// (this follows the approach suggested in
// https://github.com/dtolnay/async-trait/issues/45#issuecomment-571245673)
fn get_async_trait_function(block: &Block, block_is_async: bool) -> Option<&ItemFn> {
    // are we in an async context? If yes, this isn't a async_trait-like pattern
    if block_is_async {
        return None;
    }

    // list of async functions declared inside the block
    let mut inside_funs = Vec::new();
    // last expression declared in the block (it determines the return
    // value of the block, so that if we are working on a function
    // whose `trait` or `impl` declaration is annotated by async_trait,
    // this is quite likely the point where the future is pinned)
    let mut last_expr = None;

    // obtain the list of direct internal functions and the last
    // expression of the block
    for stmt in &block.stmts {
        if let Stmt::Item(Item::Fn(fun)) = &stmt {
            // is the function declared as async? If so, this is a good
            // candidate, let's keep it in hand
            if fun.sig.asyncness.is_some() {
                inside_funs.push(fun);
            }
        } else if let Stmt::Expr(e) = &stmt {
            last_expr = Some(e);
        }
    }

    // let's play with (too much) pattern matching
    // is the last expression a function call?
    if let Some(Expr::Call(ExprCall {
        func: outside_func,
        args: outside_args,
        ..
    })) = last_expr
    {
        if let Expr::Path(path) = outside_func.as_ref() {
            // is it a call to `Box::pin()`?
            if "Box::pin" == path_to_string(&path.path) {
                // does it takes at least an argument? (if it doesn't,
                // it's not gonna compile anyway, but that's no reason
                // to (try to) perform an out of bounds access)
                if outside_args.is_empty() {
                    return None;
                }
                // is the argument to Box::pin a function call itself?
                if let Expr::Call(ExprCall { func, args, .. }) = &outside_args[0] {
                    if let Expr::Path(inside_path) = func.as_ref() {
                        // "stringify" the path of the function called
                        let func_name = path_to_string(&inside_path.path);
                        // is this function directly defined insided the current block?
                        for fun in inside_funs {
                            if fun.sig.ident == func_name {
                                // we must hook this function now
                                return Some(fun);
                            }
                        }
                    }
                }
            }
        }
    }
    None
}

struct AsyncTraitInfo {
    name: String,
    self_type: Option<syn::TypePath>,
}

// Return the informations necessary to process a function annotated with async-trait.
fn get_async_trait_info(block: &Block, block_is_async: bool) -> Option<AsyncTraitInfo> {
    let fun = get_async_trait_function(block, block_is_async)?;

    // if "_self" is present as an argument, we store its type to be able to rewrite "Self" (the
    // parameter type) with the type of "_self"
    let self_type = fun
        .sig
        .inputs
        .iter()
        .map(|arg| {
            if let FnArg::Typed(ty) = arg {
                if let Pat::Ident(PatIdent { ident, .. }) = &*ty.pat {
                    if ident == "_self" {
                        let mut ty = &*ty.ty;
                        // extract the inner type if the argument is "&self" or "&mut self"
                        if let syn::Type::Reference(syn::TypeReference { elem, .. }) = ty {
                            ty = &*elem;
                        }
                        if let syn::Type::Path(tp) = ty {
                            return Some(tp.clone());
                        }
                    }
                }
            }

            None
        })
        .next();
    let self_type = match self_type {
        Some(x) => x,
        None => None,
    };

    Some(AsyncTraitInfo {
        name: fun.sig.ident.to_string(),
        self_type,
    })
}

// Return a path as a String
fn path_to_string(path: &Path) -> String {
    use std::fmt::Write;
    // some heuristic to prevent too many allocations
    let mut res = String::with_capacity(path.segments.len() * 5);
    for i in 0..path.segments.len() {
        write!(&mut res, "{}", path.segments[i].ident)
            .expect("writing to a String should never fail");
        if i < path.segments.len() - 1 {
            res.push_str("::");
        }
    }
    res
}

// A visitor struct replacing the "self" and "Self" tokens in user-supplied fields expressions when
// the function is generated by async-trait.
struct SelfReplacer {
    ty: Option<syn::TypePath>,
}

impl syn::visit_mut::VisitMut for SelfReplacer {
    fn visit_ident_mut(&mut self, id: &mut Ident) {
        if id == "self" {
            *id = Ident::new("_self", id.span())
        }
    }

    fn visit_type_mut(&mut self, ty: &mut syn::Type) {
        if let syn::Type::Path(syn::TypePath { ref mut path, .. }) = ty {
            if path_to_string(path) == "Self" {
                if let Some(ref true_type) = self.ty {
                    *path = true_type.path.clone();
                }
            }
        }
    }
}