1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
use crate::density_estimation::{BuildDensityEstimator, DensityEstimator};
use crate::Range;
use ordered_float::OrderedFloat;
use rand::distributions::Distribution;
use rand::seq::SliceRandom;
use rand::Rng;
use statrs::distribution::{Continuous, ContinuousCDF};

/// Builder of [`ParzenEstimator`].
#[derive(Debug, Default)]
pub struct ParzenEstimatorBuilder {}

impl ParzenEstimatorBuilder {
    /// Makes a new [`ParzenEstimatorBuilder`] instance.
    pub fn new() -> Self {
        Self::default()
    }

    fn setup_stddev(&self, xs: &mut [Normal], range: Range) {
        let n = xs.len();
        for i in 0..n {
            let prev = if i == 0 {
                range.start()
            } else {
                xs[i - 1].mean
            };
            let curr = xs[i].mean;
            let succ = xs.get(i + 1).map_or(range.end(), |x| x.mean);
            xs[i].stddev = (curr - prev).max(succ - curr);
        }

        if n >= 2 {
            xs[0].stddev = xs[1].mean - xs[0].mean;
            xs[n - 1].stddev = xs[n - 1].mean - xs[n - 2].mean;
        }

        let max_stddev = range.width();
        let min_stddev = range.width() / 100f64.min(1.0 + n as f64);
        for x in xs {
            x.stddev = x.stddev.max(min_stddev).min(max_stddev);
        }
    }
}

impl BuildDensityEstimator for ParzenEstimatorBuilder {
    type Estimator = ParzenEstimator;
    type Error = std::convert::Infallible;

    fn build_density_estimator<I>(
        &self,
        xs: I,
        range: Range,
    ) -> Result<Self::Estimator, Self::Error>
    where
        I: Iterator<Item = f64> + Clone,
    {
        let prior = (range.start() + range.end()) * 0.5;
        let mut xs = xs
            .chain(std::iter::once(prior))
            .map(|x| Normal {
                mean: x,
                stddev: std::f64::NAN,
            })
            .collect::<Vec<_>>();
        xs.sort_by_key(|x| OrderedFloat(x.mean));

        self.setup_stddev(&mut xs, range);

        let p_accept = xs
            .iter()
            .map(|x| x.cdf(range.end()) - x.cdf(range.start()))
            .sum::<f64>()
            / xs.len() as f64;

        Ok(ParzenEstimator {
            samples: xs,
            range,
            p_accept,
        })
    }
}

/// Normal distribution.
#[derive(Debug)]
struct Normal {
    mean: f64,
    stddev: f64,
}

impl Normal {
    fn log_pdf(&self, x: f64) -> f64 {
        statrs::distribution::Normal::new(self.mean, self.stddev)
            .expect("unreachable")
            .ln_pdf(x)
    }

    fn cdf(&self, x: f64) -> f64 {
        statrs::distribution::Normal::new(self.mean, self.stddev)
            .expect("unreachable")
            .cdf(x)
    }
}

/// Parzen window based density estimator.
///
/// This can be used for numerical parameters.
#[derive(Debug)]
pub struct ParzenEstimator {
    samples: Vec<Normal>,
    range: Range,
    p_accept: f64,
}

impl DensityEstimator for ParzenEstimator {
    fn log_pdf(&self, x: f64) -> f64 {
        let weight = 1.0 / self.samples.len() as f64;
        let xs = self
            .samples
            .iter()
            .map(|sample| sample.log_pdf(x) + (weight / self.p_accept).ln())
            .collect::<Vec<_>>();
        logsumexp(&xs)
    }
}

fn logsumexp(xs: &[f64]) -> f64 {
    let max_x = xs
        .iter()
        .max_by_key(|&&x| OrderedFloat(x))
        .expect("unreachable");
    xs.iter().map(|&x| (x - max_x).exp()).sum::<f64>().ln() + max_x
}

impl Distribution<f64> for ParzenEstimator {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        while let Some(x) = self.samples.choose(rng) {
            let draw = rand_distr::Normal::new(x.mean, x.stddev)
                .expect("unreachable")
                .sample(rng);
            if self.range.contains(draw) {
                return draw;
            }
        }
        unreachable!();
    }
}