1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//! This is documentation for the `tpa2016d2` module.

#![no_std]
#![allow(dead_code)]

use embedded_hal::blocking::i2c;

mod regmap;
use regmap::*;

// The datasheet uses the adresses 0xB0 and 0xB1 for its examples
// So it is defined like this for clarity.
const TPA2016_I2C_ADDR: u8 = 0xB0 >> 1;

/// Representation of a Texas Instruments TPA2016d2 audio amplifier
pub struct Tpa2016d2<I2C> {
    i2c: I2C,
    regmap: RegisterMap,
}

/// Faults
pub struct Faults {
    pub fault_r: bool,
    pub fault_l: bool,
    pub thermal: bool,
}

/// Compression Ratio
pub enum CompressionRatio {
    /// Ratio 1:1
    Ratio1 = 0b00,
    /// Ratio 2:1
    Ratio2 = 0b01,
    /// Ratio 4:1
    Ratio4 = 0b10,
    /// Ratio 8:1
    Ratio8 = 0b11,
}

/// Noise Gate Threshold
pub enum NoiseGateThreshold {
    Ngt20mV = 0b11,
    Ngt10mV = 0b10,
    Ngt4mV = 0b01,
    Ngt1mV = 0b00,
}

/// Automatic Gain Control Presets
pub enum AgcPreset {
    Pop,
    Classical,
    Jazz,
    Rap,
    Rock,
    Voice,
}

impl<I2C, E> Tpa2016d2<I2C>
where
    I2C: i2c::Write<Error = E> + i2c::WriteRead<Error = E>,
{
    /// Creates a new device connected through the supplied i2c device
    pub fn new(i2c: I2C) -> Tpa2016d2<I2C> {
        let regmap = RegisterMap::default();

        Tpa2016d2 { i2c, regmap }
    }

    /// Read all registers and update our view of the registers
    pub fn sync(&mut self) -> Result<(), E> {
        for i in 1..=7 {
            let val = self.read_reg(i)?;
            self.regmap.update_map(i, val);
        }
        Ok(())
    }

    /// Consume the device and release the i2c device
    pub fn release(self) -> I2C {
        self.i2c
    }

    // Get content of register i
    pub fn device_reg(&mut self, idx: u8) -> Result<u8, E> {
        Ok(self.regmap.reg_as_byte(idx))
    }

    /// Enable or disable speakers
    pub fn speaker_enable(&mut self, le: bool, re: bool) -> Result<(), E> {
        self.regmap.reg1.SPK_EN_L = le;
        self.regmap.reg1.SPK_EN_R = re;
        self.write_regmap_reg(1)
    }

    pub fn get_faults(&mut self) -> Result<Faults, E> {
        // Reload register
        let val = self.read_reg(1)?;
        self.regmap.update_map(1, val);

        Ok(Faults {
            fault_r: self.regmap.reg1.FAULT_R,
            fault_l: self.regmap.reg1.FAULT_L,
            thermal: self.regmap.reg1.Thermal,
        })
    }

    /// Shutdown the device
    /// Control, Bias and Oscillators are disabled
    pub fn disable_device(&mut self) -> Result<(), E> {
        self.regmap.reg1.SWS = true;
        self.write_regmap_reg(1)
    }

    pub fn noise_gate(&mut self, enable: bool) -> Result<(), E> {
        self.regmap.reg1.NG_EN = enable;
        self.write_regmap_reg(1)
    }

    pub fn set_attack_time(&mut self, val: u8) -> Result<(), E> {
        self.regmap.atk_time.set(val);
        self.write_regmap_reg(2)
    }

    /// Set release time / per 6 dB
    pub fn set_release_time(&mut self, val: u8) -> Result<(), E> {
        self.regmap.rel_time.set(val);
        self.write_regmap_reg(3)
    }

    pub fn set_hold_time(&mut self, val: u8) -> Result<(), E> {
        self.regmap.hold_time.set(val);
        self.write_regmap_reg(4)
    }

    /// Set the gain
    pub fn gain(&mut self, gain: u8) -> Result<(), E> {
        self.regmap.fixedGain.set(gain);
        self.write_regmap_reg(5)
    }

    pub fn noise_gate_threshold(&mut self, val: NoiseGateThreshold) -> Result<(), E> {
        self.regmap.reg6.noise_gate_threshold = val as u8;
        self.write_regmap_reg(6)
    }

    pub fn output_limiter_level(&mut self, val: u8) -> Result<(), E> {
        self.regmap.reg6.output_limiter_level = val;
        self.write_regmap_reg(6)
    }

    pub fn compression_ratio(&mut self, ratio: CompressionRatio) -> Result<(), E> {
        self.regmap.reg7.compression_ratio = ratio as u8;
        self.write_regmap_reg(7)
    }

    pub fn set_agc_preset(&mut self, preset: AgcPreset) -> Result<(), E> {
        use AgcPreset::*;
        use CompressionRatio::*;

        // From the data sheet
        let (cr, atk, rel_time, hold_time, fixed_gain, limiter_level) = match preset {
            Pop => (Ratio4, 0b00_0010, 986, 137, 6, 0b11_1100),
            Classical => (Ratio2, 0b00_0010, 1150, 137, 6, 0b11_1101),
            Jazz => (Ratio2, 0b00_0110, 3288, 0, 6, 0b11_1101),
            Rap => (Ratio4, 0b00_0010, 1640, 0, 6, 0b11_1100),
            Rock => (Ratio2, 0b00_0011, 4110, 0, 6, 0b11_1101),
            Voice => (Ratio4, 0b00_0010, 1640, 0, 6, 0b11_1110),
        };

        let rel_time = release_time_to_u6(rel_time);
        let hold_time = hold_time_to_u6(hold_time);

        self.regmap.atk_time.set(atk);
        self.regmap.rel_time.set(rel_time);
        self.regmap.hold_time.set(hold_time);
        self.regmap.fixedGain.set(fixed_gain);
        self.regmap.reg6.output_limiter_level = limiter_level;
        self.regmap.reg7.compression_ratio = cr as u8;

        // Send the new settings to the device
        for rid in 2..=7 {
            self.write_regmap_reg(rid)?;
        }

        Ok(())
    }

    fn write_regmap_reg(&mut self, idx: u8) -> Result<(), E> {
        let b = self.regmap.reg_as_byte(idx);
        self.write_reg(idx, b)
    }

    fn read_reg(&mut self, regidx: u8) -> Result<u8, E> {
        if regidx < 1 || regidx > 7 {
            return Ok(0);
        }

        let mut regbuf = [0u8; 1];
        self.i2c
            .write_read(TPA2016_I2C_ADDR, &[regidx], &mut regbuf)?;

        Ok(regbuf[0])
    }

    fn write_reg(&mut self, regaddr: u8, value: u8) -> Result<(), E> {
        let regbuf = [regaddr, value];
        self.i2c.write(TPA2016_I2C_ADDR, &regbuf)
    }
}

const fn release_time_to_u6(v: u32) -> u8 {
    (v / 1644) as u8
}

const fn hold_time_to_u6(v: u32) -> u8 {
    (v / 137) as u8
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn release_time_conv() {
        let tests = [(1644, 0b00_0001), (4932, 0b00_0011), (103600, 0b11_1111)];
        for &(input, bitval) in &tests {
            let res = release_time_to_u6(input);
            assert_eq!(res, bitval);
        }
    }

    #[test]
    fn hold_time_conv() {
        let tests = [(137, 0b00_0001), (0411, 0b00_0011), (8631, 0b11_1111)];
        for &(input, bitval) in &tests {
            let res = hold_time_to_u6(input);
            assert_eq!(res, bitval);
        }
    }

    #[test]
    fn test_register_defaults() {
        let regmap = RegisterMap::default();

        let r1 = regmap.reg_as_byte(1);
        let r2 = regmap.reg_as_byte(2);
        let r3 = regmap.reg_as_byte(3);
        let r4 = regmap.reg_as_byte(4);
        let r5 = regmap.reg_as_byte(5);
        let r6 = regmap.reg_as_byte(6);
        let r7 = regmap.reg_as_byte(7);

        assert_eq!(r1, 0xC3);
        assert_eq!(r2, 0x05);
        assert_eq!(r3, 0x0B);
        assert_eq!(r4, 0x00);
        assert_eq!(r5, 0x06);
        assert_eq!(r6, 0x3A);
        assert_eq!(r7, 0xC2);
    }
}