1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#![no_std]
#![allow(dead_code)]

use embedded_hal::blocking::i2c;

mod regmap;
use regmap::*;

const TPA2016_I2C_ADDR: u8 = 0xB0 >> 1;

/// Representation of a Texas Instruments TPA2016d2 audio amplifier
pub struct Tpa2016d2<I2C> {
    i2c: I2C,
    regmap: RegisterMap,
}

/// Faults
pub struct Faults {
    pub fault_r: bool,
    pub fault_l: bool,
    pub thermal: bool,
}

/// Compression Ratio
pub enum CompressionRatio {
    /// Ratio 1:1
    Ratio1 = 0b00,
    /// Ratio 2:1
    Ratio2 = 0b01,
    /// Ratio 4:1
    Ratio4 = 0b10,
    /// Ratio 8:1
    Ratio8 = 0b11,
}

/// Noise Gate Threshold
pub enum NoiseGateThreshold {
    Ngt20mV = 0b11,
    Ngt10mV = 0b10,
    Ngt4mV = 0b01,
    Ngt1mV = 0b00,
}

impl<I2C, E> Tpa2016d2<I2C>
where
    I2C: i2c::Write<Error = E> + i2c::WriteRead<Error = E>,
{
    /// Creates a new device connected through the supplied i2c device
    pub fn new(i2c: I2C) -> Tpa2016d2<I2C> {
        let regmap = RegisterMap::default();

        Tpa2016d2 { i2c, regmap }
    }

    /// Consume the device and release the i2c device
    pub fn release(self) -> I2C {
        self.i2c
    }

    // Read register
    pub fn read_device_reg(&mut self, idx: u8) -> Result<u8, E> {
        self.read_reg(idx)
    }

    /// Enable or disable speakers
    pub fn speaker_enable(&mut self, le: bool, re: bool) -> Result<(), E> {
        let cur = self.read_reg(1)?;
        self.regmap.reg1.update(cur);
        self.regmap.reg1.SPK_EN_L = le;
        self.regmap.reg1.SPK_EN_R = re;
        self.write_reg_idx(1)
    }

    pub fn get_faults(&mut self) -> Result<Faults, E> {
        let cur = self.read_reg(1)?;
        self.regmap.reg1.update(cur);

        Ok(Faults {
            fault_r: self.regmap.reg1.FAULT_R,
            fault_l: self.regmap.reg1.FAULT_L,
            thermal: self.regmap.reg1.Thermal,
        })
    }

    /// Shutdown the device
    /// Control, Bias and Oscillators are disabled
    pub fn disable_device(&mut self) -> Result<(), E> {
        let cur = self.read_reg(1)?;
        self.regmap.reg1.update(cur);
        self.regmap.reg1.SWS = true;
        self.write_reg_idx(1)
    }

    pub fn noise_gate(&mut self, enable: bool) -> Result<(), E> {
        let cur = self.read_reg(1)?;
        self.regmap.reg1.update(cur);
        self.regmap.reg1.NG_EN = enable;
        self.write_reg_idx(1)
    }

    /// Set the gain
    pub fn gain(&mut self, gain: u8) -> Result<(), E> {
        self.regmap.fixedGain.set(gain);
        self.write_reg_idx(5)
    }

    /// Set attack time / Per 6 dB
    pub fn set_attack_time(&mut self, us: u16) -> Result<(), E> {
        let regval = (us / 1280) as u8;
        self.regmap.atk_time.set(regval);
        self.write_reg_idx(2)
    }

    /// Set release time / per 6 dB
    pub fn set_release_time(&mut self, ms: u16) -> Result<(), E> {
        let regval = (ms / 164) as u8;
        self.regmap.rel_time.set(regval);
        self.write_reg_idx(3)
    }

    pub fn set_hold_time(&mut self, ms: u16) -> Result<(), E> {
        let val = (ms / 164) as u8;
        self.regmap.hold_time.set(val);
        self.write_reg_idx(4)
    }

    pub fn set_fixed_gain(&mut self, db: u8) -> Result<(), E> {
        self.regmap.fixedGain.set(db);
        self.write_reg_idx(5)
    }

    pub fn noise_gate_threshold(&mut self, val: NoiseGateThreshold) -> Result<(), E> {
        let cur = self.read_reg(6)?;
        self.regmap.reg6.update(cur);
        self.regmap.reg6.noise_gate_threshold = val as u8;
        self.write_reg_idx(6)
    }

    pub fn output_limiter_level(&mut self, val: u8) -> Result<(), E> {
        let cur = self.read_reg(6)?;
        self.regmap.reg6.update(cur);
        self.regmap.reg6.output_limiter_level = val;
        self.write_reg_idx(6)
    }

    pub fn compression_ratio(&mut self, ratio: CompressionRatio) -> Result<(), E> {
        let cur = self.read_reg(7)?;
        self.regmap.reg7.update(cur);
        self.regmap.reg7.compression_ratio = ratio as u8;
        self.write_reg_idx(7)
    }

    fn write_reg_idx(&mut self, idx: usize) -> Result<(), E> {
        let b = self.regmap.reg_as_byte(idx);
        self.write_reg(idx as u8, b)
    }

    fn read_reg(&mut self, regidx: u8) -> Result<u8, E> {
        if regidx < 1 || regidx > 7 {
            return Ok(0);
        }

        let mut regbuf = [0u8; 1];
        self.i2c
            .write_read(TPA2016_I2C_ADDR, &[regidx], &mut regbuf)?;

        Ok(regbuf[0])
    }

    fn write_reg(&mut self, regaddr: u8, value: u8) -> Result<(), E> {
        let regbuf = [regaddr, value];
        self.i2c.write(TPA2016_I2C_ADDR, &regbuf)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_register_defaults() {
        let regmap = RegisterMap::default();

        let r1 = regmap.reg_as_byte(1);
        let r2 = regmap.reg_as_byte(2);
        let r3 = regmap.reg_as_byte(3);
        let r4 = regmap.reg_as_byte(4);
        let r5 = regmap.reg_as_byte(5);
        let r6 = regmap.reg_as_byte(6);
        let r7 = regmap.reg_as_byte(7);

        assert_eq!(r1, 0xC3);
        assert_eq!(r2, 0x05);
        assert_eq!(r3, 0x0B);
        assert_eq!(r4, 0x00);
        assert_eq!(r5, 0x06);
        assert_eq!(r6, 0x3A);
        assert_eq!(r7, 0xC2);
    }
}