1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//! Mock `Service` that can be used in tests.

pub mod error;
pub mod future;

use crate::mock::{error::Error, future::ResponseFuture};
use core::task::Waker;

use tokio_sync::{mpsc, oneshot};
use tower_service::Service;

use std::{
    collections::HashMap,
    future::Future,
    pin::Pin,
    sync::{Arc, Mutex},
    task::{Context, Poll},
    u64,
};

/// A mock service
#[derive(Debug)]
pub struct Mock<T, U> {
    id: u64,
    tx: Mutex<Tx<T, U>>,
    state: Arc<Mutex<State>>,
    can_send: bool,
}

/// Handle to the `Mock`.
#[derive(Debug)]
pub struct Handle<T, U> {
    rx: Rx<T, U>,
    state: Arc<Mutex<State>>,
}

type Request<T, U> = (T, SendResponse<U>);

/// Send a response in reply to a received request.
#[derive(Debug)]
pub struct SendResponse<T> {
    tx: oneshot::Sender<Result<T, Error>>,
}

#[derive(Debug)]
struct State {
    /// Tracks the number of requests that can be sent through
    rem: u64,

    /// Tasks that are blocked
    tasks: HashMap<u64, Waker>,

    /// Tracks if the `Handle` dropped
    is_closed: bool,

    /// Tracks the ID for the next mock clone
    next_clone_id: u64,

    /// Tracks the next error to yield (if any)
    err_with: Option<Error>,
}

type Tx<T, U> = mpsc::UnboundedSender<Request<T, U>>;
type Rx<T, U> = mpsc::UnboundedReceiver<Request<T, U>>;

/// Create a new `Mock` and `Handle` pair.
pub fn pair<T, U>() -> (Mock<T, U>, Handle<T, U>) {
    let (tx, rx) = mpsc::unbounded_channel();
    let tx = Mutex::new(tx);

    let state = Arc::new(Mutex::new(State::new()));

    let mock = Mock {
        id: 0,
        tx,
        state: state.clone(),
        can_send: false,
    };

    let handle = Handle { rx, state };

    (mock, handle)
}

impl<T, U> Service<T> for Mock<T, U> {
    type Response = U;
    type Error = Error;
    type Future = ResponseFuture<U>;

    fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        let mut state = self.state.lock().unwrap();

        if state.is_closed {
            return Poll::Ready(Err(error::Closed::new().into()));
        }

        if let Some(e) = state.err_with.take() {
            return Poll::Ready(Err(e));
        }

        if self.can_send {
            return Poll::Ready(Ok(()));
        }

        if state.rem > 0 {
            assert!(!state.tasks.contains_key(&self.id));

            // Returning `Ready` means the next call to `call` must succeed.
            self.can_send = true;

            Poll::Ready(Ok(()))
        } else {
            // Bit weird... but whatevz
            *state
                .tasks
                .entry(self.id)
                .or_insert_with(|| cx.waker().clone()) = cx.waker().clone();

            Poll::Pending
        }
    }

    fn call(&mut self, request: T) -> Self::Future {
        // Make sure that the service has capacity
        let mut state = self.state.lock().unwrap();

        if state.is_closed {
            return ResponseFuture::closed();
        }

        if !self.can_send {
            panic!("service not ready; poll_ready must be called first");
        }

        self.can_send = false;

        // Decrement the number of remaining requests that can be sent
        if state.rem > 0 {
            state.rem -= 1;
        }

        let (tx, rx) = oneshot::channel();
        let send_response = SendResponse { tx };

        match self.tx.lock().unwrap().try_send((request, send_response)) {
            Ok(_) => {}
            Err(_) => {
                // TODO: Can this be reached
                return ResponseFuture::closed();
            }
        }

        ResponseFuture::new(rx)
    }
}

impl<T, U> Clone for Mock<T, U> {
    fn clone(&self) -> Self {
        let id = {
            let mut state = self.state.lock().unwrap();
            let id = state.next_clone_id;

            state.next_clone_id += 1;

            id
        };

        let tx = Mutex::new(self.tx.lock().unwrap().clone());

        Mock {
            id,
            tx,
            state: self.state.clone(),
            can_send: false,
        }
    }
}

impl<T, U> Drop for Mock<T, U> {
    fn drop(&mut self) {
        let mut state = match self.state.lock() {
            Ok(v) => v,
            Err(e) => {
                if ::std::thread::panicking() {
                    return;
                }

                panic!("{:?}", e);
            }
        };

        state.tasks.remove(&self.id);
    }
}

// ===== impl Handle =====

impl<T, U> Handle<T, U> {
    /// Asynchronously gets the next request
    pub fn poll_request(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Request<T, U>>> {
        Box::pin(self.rx.recv()).as_mut().poll(cx)
    }

    /// Synchronously gets the next request.
    ///
    /// This function blocks the current thread until a request is received.
    pub fn next_request(mut self: Pin<&mut Self>) -> Option<Request<T, U>> {
        use futures_executor::block_on;
        use futures_util::future::poll_fn;

        block_on(poll_fn(|cx| self.as_mut().poll_request(cx)))
    }

    /// Allow a certain number of requests
    pub fn allow(&mut self, num: u64) {
        let mut state = self.state.lock().unwrap();
        state.rem = num;

        if num > 0 {
            for (_, task) in state.tasks.drain() {
                task.wake();
            }
        }
    }

    /// Make the next poll_ method error with the given error.
    pub fn send_error<E: Into<Error>>(&mut self, e: E) {
        let mut state = self.state.lock().unwrap();
        state.err_with = Some(e.into());

        for (_, task) in state.tasks.drain() {
            task.wake();
        }
    }
}

impl<T, U> Drop for Handle<T, U> {
    fn drop(&mut self) {
        let mut state = match self.state.lock() {
            Ok(v) => v,
            Err(e) => {
                if ::std::thread::panicking() {
                    return;
                }

                panic!("{:?}", e);
            }
        };

        state.is_closed = true;

        for (_, task) in state.tasks.drain() {
            task.wake();
        }
    }
}

// ===== impl SendResponse =====

impl<T> SendResponse<T> {
    pub fn send_response(self, response: T) {
        // TODO: Should the result be dropped?
        let _ = self.tx.send(Ok(response));
    }

    pub fn send_error<E: Into<Error>>(self, err: E) {
        // TODO: Should the result be dropped?
        let _ = self.tx.send(Err(err.into()));
    }
}

// ===== impl State =====

impl State {
    fn new() -> State {
        State {
            rem: u64::MAX,
            tasks: HashMap::new(),
            is_closed: false,
            next_clone_id: 1,
            err_with: None,
        }
    }
}