1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
//! Collection of bresenham implementation of lines, circles, … as Iterable.

use core::iter::Iterator;

use crate::Point;

/// Iterator-based Bresenham's line drawing algorithm.
///
/// Fork from <https://github.com/mbr/bresenham-rs> so that the iterator includes
/// `start` and `end`.
///
/// [Bresenham's line drawing algorithm](https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm)
/// is a fast algorithm to draw a line between two points. This implements the fast
/// integer variant, using an iterator-based appraoch for flexibility. It
/// calculates coordinates without knowing anything about drawing methods or
/// surfaces.
///
/// # Example
///
/// ```rust
/// use torchbearer::bresenham::BresenhamLine;
///
/// for (x, y) in BresenhamLine::new((0, 1), (6, 4)) {
///     println!("{}, {}", x, y);
/// }
/// ```
///
/// Will print:
///
/// ```text
/// (0, 1)                      . . . . . . .
/// (1, 1)                      x # . . . . .
/// (2, 2)   corresponding to   . . # # . . .
/// (3, 2)                      . . . . # # .
/// (4, 3)                      . . . . . . x
/// (5, 3)                      . . . . . . .
/// (6, 4)
/// ```
pub struct BresenhamLine {
    x: i32,
    y: i32,
    dx: i32,
    dy: i32,
    x1: i32,
    diff: i32,
    octant: Octant,
}

struct Octant(u8);

impl Octant {
    /// adapted from http://codereview.stackexchange.com/a/95551
    #[inline]
    fn from_points(start: Point, end: Point) -> Octant {
        let mut dx = end.0 - start.0;
        let mut dy = end.1 - start.1;

        let mut octant = 0;

        if dy < 0 {
            dx = -dx;
            dy = -dy;
            octant += 4;
        }

        if dx < 0 {
            let tmp = dx;
            dx = dy;
            dy = -tmp;
            octant += 2
        }

        if dx < dy {
            octant += 1
        }

        Octant(octant)
    }

    #[inline]
    fn point_to_octant(&self, p: Point) -> Point {
        match self.0 {
            0 => (p.0, p.1),
            1 => (p.1, p.0),
            2 => (p.1, -p.0),
            3 => (-p.0, p.1),
            4 => (-p.0, -p.1),
            5 => (-p.1, -p.0),
            6 => (-p.1, p.0),
            7 => (p.0, -p.1),
            _ => unreachable!(),
        }
    }

    #[inline]
    fn point_from_octant(&self, p: Point) -> Point {
        match self.0 {
            0 => (p.0, p.1),
            1 => (p.1, p.0),
            2 => (-p.1, p.0),
            3 => (-p.0, p.1),
            4 => (-p.0, -p.1),
            5 => (-p.1, -p.0),
            6 => (p.1, -p.0),
            7 => (p.0, -p.1),
            _ => unreachable!(),
        }
    }
}

impl BresenhamLine {
    /// Creates a new iterator. Yields intermediate points between `start`
    /// and `end`, inclusive.
    pub fn new(start: Point, end: Point) -> BresenhamLine {
        let octant = Octant::from_points(start, end);

        let start = octant.point_to_octant(start);
        let end = octant.point_to_octant(end);

        let dx = end.0 - start.0;
        let dy = end.1 - start.1;

        BresenhamLine {
            x: start.0,
            y: start.1,
            dx,
            dy,
            x1: end.0,
            diff: dy - dx,
            octant,
        }
    }
}

impl ExactSizeIterator for BresenhamLine {}

impl Iterator for BresenhamLine {
    type Item = Point;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.x > self.x1 {
            return None;
        }

        let p = (self.x, self.y);

        if self.diff >= 0 {
            self.y += 1;
            self.diff -= self.dx;
        }

        self.diff += self.dy;

        // loop inc
        self.x += 1;

        Some(self.octant.point_from_octant(p))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = (self.dx + 1) as usize;
        (len, Some(len))
    }
}

/// Iterator-based Bresenham's circle drawing algorithm.
///
/// [Bresenham's circle drawing algorithm](http://members.chello.at/~easyfilter/bresenham.html)
/// is a fast algorithm to draw the circumference of a circle.
///
/// # Example
///
/// ```
/// use torchbearer::bresenham::BresenhamCircle;
///
/// let center = (0, 0);
/// let radius = 2;
/// for (x, y) in BresenhamCircle::new(center, radius) {
///     println!("{}, {}", x, y);
/// }
/// ```
///
/// Will print
///
/// ```text
/// (2, 0)
/// (2, 1)
/// (1, 2)
/// (0, 2)                       . . . . . . .
/// (-1, 2)                      . . # # # . .
/// (-2, 1)                      . # . . . # .
/// (-2, 0)   corresponding to   . # . x . # .
/// (-2, -1)                     . # . . . # .
/// (-1, -2)                     . . # # # . .
/// (0, -2)                      . . . . . . .
/// (1, -2)
/// (2, -1)
/// ```
pub struct BresenhamCircle {
    center: Point,
    original_radius: i32,
    radius: i32,
    x: i32,
    y: i32,
    err: i32,
    current_quadrant: i32,
}

impl BresenhamCircle {
    /// Create new iterator. Yield all points on the circumference of the circle
    /// of center `center` and radius `radius`.
    pub fn new(center: Point, radius: i32) -> Self {
        BresenhamCircle {
            center,
            original_radius: radius,
            radius,
            x: -radius,
            y: 0,
            err: 2 - 2 * radius,
            current_quadrant: 0,
        }
    }
}

impl Iterator for BresenhamCircle {
    type Item = Point;

    fn next(&mut self) -> Option<Self::Item> {
        if self.x >= 0 {
            None
        } else {
            let point = match self.current_quadrant {
                0 => (self.center.0 - self.x, self.center.1 + self.y),
                1 => (self.center.0 - self.y, self.center.1 - self.x),
                2 => (self.center.0 + self.x, self.center.1 - self.y),
                3 => (self.center.0 + self.y, self.center.1 + self.x),
                _ => unreachable!(),
            };

            // We went through the points of 4 quadrants, moving on.
            self.radius = self.err;
            if self.radius <= self.y {
                self.y += 1;
                self.err += self.y * 2 + 1;
            }
            if self.radius > self.x || self.err > self.y {
                self.x += 1;
                self.err += self.x * 2 + 1;
            }

            if self.x >= 0 && self.current_quadrant < 3 {
                self.current_quadrant = (self.current_quadrant + 1) % 4;
                // Reset for next quadrant
                self.radius = self.original_radius;
                self.x = -self.original_radius;
                self.y = 0;
                self.err = 2 - 2 * self.original_radius;
            }

            Some(point)
        }
    }
}

/// Iterator-based Bresenham's circle drawing algorithm with a twist:
///
/// This will output each element of the circle, not ordered (because following octant), and making
/// sure that each point of the circle move step by step, by x or y but not both at once.
///
/// This is needed for a fiew of view implementation that cast rays from the center of the circle all around,
/// making sure to not miss any point and avoid blind spots.
///
/// # Example
///
/// ```
/// use torchbearer::bresenham::ThickBresenhamCircle;
///
/// let center = (0, 0);
/// let radius = 2;
/// for (x, y) in ThickBresenhamCircle::new(center, radius) {
///     println!("{}, {}", x, y);
/// }
/// ```
///
/// Will print
///
/// ```text
/// (-2, -1)
/// (-2, 0)
/// (-2, 1)
/// (-1, -2)
/// (-1, -1)                  . . . . . . .
/// (-1, 1)                   . . # # # . .
/// (-1, 2)                   . # # . # # .
/// (0, -2) corresponding to  . # . x . # .
/// (0, 2)                    . # # . # # .
/// (1, -2)                   . . # # # . .
/// (1, -1)                   . . . . . . .
/// (1, 1)
/// (1, 2)
/// (2, -1)
/// (2, 0)
/// (2, 1)
/// ```
pub struct ThickBresenhamCircle {
    center: Point,
    radius: i32,
    x: i32,
    y: i32,
    err: i32,
    moved: bool,
    octant: i8,
    current_step: u32,
}

impl ThickBresenhamCircle {
    pub fn new(center: Point, radius: i32) -> Self {
        // Special case for a radius of 1: we want to make sure that the output
        // is a square like so:
        // . . . . . .
        // . # # # . .
        // . # x # . .
        // . # # # . .
        // . . . . . .
        let err = if radius == 1 { -1 } else { 3 - 2 * radius };

        Self {
            center,
            radius,
            x: radius,
            y: 0,
            err,
            moved: false,
            octant: 0,
            current_step: 0,
        }
    }
}

impl Iterator for ThickBresenhamCircle {
    type Item = Point;

    fn next(&mut self) -> Option<Self::Item> {
        if self.octant == -1 {
            if self.x <= self.y {
                return None;
            }

            self.octant = 0;

            if self.moved {
                self.y += 1;
                self.moved = false;
            } else if self.err > 0 {
                self.err += 2 * (5 - 2 * self.x + 2 * self.y);
                self.x -= 1;
                self.moved = true;
            } else {
                self.err += 2 * (3 + 2 * self.y);
                self.y += 1;
            }

            self.current_step += 1;
        }

        let point = match self.octant {
            0 => (self.center.0 + self.x, self.center.1 + self.y),
            1 => (self.center.0 + self.y, self.center.1 + self.x),
            2 => (self.center.0 - self.y, self.center.1 + self.x),
            3 => (self.center.0 - self.x, self.center.1 + self.y),
            4 => (self.center.0 - self.x, self.center.1 - self.y),
            5 => (self.center.0 - self.y, self.center.1 - self.x),
            6 => (self.center.0 + self.y, self.center.1 - self.x),
            7 => (self.center.0 + self.x, self.center.1 - self.y),
            _ => unreachable!(),
        };

        let step = if self.current_step == 0 || self.x <= self.y {
            2
        } else {
            1
        };
        if self.octant + step < 8 {
            self.octant += step;
        } else {
            self.octant = -1;
        }

        Some(point)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let size = self.radius as usize * 8;
        (size, Some(size))
    }
}

impl ExactSizeIterator for ThickBresenhamCircle {}

#[cfg(test)]
mod tests {
    use super::{BresenhamCircle, BresenhamLine, ThickBresenhamCircle};
    use std::vec::Vec;

    #[test]
    fn test_wp_example() {
        let bi = BresenhamLine::new((0, 1), (6, 4));
        let len = bi.len();
        let res: Vec<_> = bi.collect();

        assert_eq!(
            res,
            [(0, 1), (1, 1), (2, 2), (3, 2), (4, 3), (5, 3), (6, 4)]
        );
        assert_eq!(len, 7);
    }

    #[test]
    fn test_inverse_wp() {
        let bi = BresenhamLine::new((6, 4), (0, 1));
        let len = bi.len();
        let res: Vec<_> = bi.collect();

        assert_eq!(
            res,
            [(6, 4), (5, 4), (4, 3), (3, 3), (2, 2), (1, 2), (0, 1)]
        );
        assert_eq!(len, 7);
    }

    #[test]
    fn test_straight_hline() {
        let bi = BresenhamLine::new((2, 3), (5, 3));
        let len = bi.len();
        let res: Vec<_> = bi.collect();

        assert_eq!(res, [(2, 3), (3, 3), (4, 3), (5, 3)]);
        assert_eq!(len, 4);
    }

    #[test]
    fn test_straight_vline() {
        let bi = BresenhamLine::new((2, 3), (2, 6));
        let len = bi.len();
        let res: Vec<_> = bi.collect();

        assert_eq!(res, [(2, 3), (2, 4), (2, 5), (2, 6)]);
        assert_eq!(len, 4);
    }

    #[test]
    fn bresenham_circle_contiguous() {
        let circle = BresenhamCircle::new((0, 0), 2);

        let res: Vec<_> = circle.collect();

        assert_eq!(
            res,
            [
                (2, 0),
                (2, 1),
                (1, 2),
                (0, 2),
                (-1, 2),
                (-2, 1),
                (-2, 0),
                (-2, -1),
                (-1, -2),
                (0, -2),
                (1, -2),
                (2, -1)
            ]
        );
    }

    #[test]
    fn circle_predictable_length() {
        let circle = ThickBresenhamCircle::new((0, 0), 3);

        let points = circle.collect::<Vec<_>>();

        assert_eq!(24, points.len());
    }

    #[test]
    fn circle_radius_1_is_square() {
        let circle = ThickBresenhamCircle::new((0, 0), 1);

        let mut expected = vec![
            (0, 1),
            (1, 1),
            (1, 0),
            (1, -1),
            (0, -1),
            (-1, -1),
            (-1, 0),
            (-1, 1),
        ];
        expected.sort();

        let mut result = circle.collect::<Vec<_>>();
        result.sort();

        assert_eq!(expected, result);
    }
}