1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
//! `tor-units` -- Safe wrappers for primitive numeric types.
//!
//! # Overview
//!
//! This crate is part of
//! [Arti](https://gitlab.torproject.org/tpo/core/arti/), a project to
//! implement [Tor](https://www.torproject.org/) in Rust.
//! It provides safe wrappers for primitive numeric wrappers used in
//! other parts of Arti.
//! In particular, it provides:
//!   * a bounded i32 with both checked and clamping constructors,
//!   * an integer milliseconds wrapper with conversion to [`Duration`]
//!   * an integer seconds wrapper with conversion to [`Duration`]
//!   * a percentage wrapper, to prevent accidental failure
//!     to divide by 100.
//!   * a SendMeVersion which can be compared only.

#![deny(missing_docs)]
#![warn(noop_method_call)]
#![deny(unreachable_pub)]
#![deny(clippy::await_holding_lock)]
#![deny(clippy::cargo_common_metadata)]
#![deny(clippy::cast_lossless)]
#![deny(clippy::checked_conversions)]
#![warn(clippy::clone_on_ref_ptr)]
#![warn(clippy::cognitive_complexity)]
#![deny(clippy::debug_assert_with_mut_call)]
#![deny(clippy::exhaustive_enums)]
#![deny(clippy::exhaustive_structs)]
#![deny(clippy::expl_impl_clone_on_copy)]
#![deny(clippy::fallible_impl_from)]
#![deny(clippy::implicit_clone)]
#![deny(clippy::large_stack_arrays)]
#![warn(clippy::manual_ok_or)]
#![deny(clippy::missing_docs_in_private_items)]
#![deny(clippy::missing_panics_doc)]
#![warn(clippy::needless_borrow)]
#![warn(clippy::needless_pass_by_value)]
#![warn(clippy::option_option)]
#![warn(clippy::rc_buffer)]
#![deny(clippy::ref_option_ref)]
#![warn(clippy::trait_duplication_in_bounds)]
#![deny(clippy::unnecessary_wraps)]
#![warn(clippy::unseparated_literal_suffix)]
#![deny(clippy::unwrap_used)]

use derive_more::{Add, Display, Div, From, FromStr, Mul};

use std::convert::{TryFrom, TryInto};
use std::time::Duration;
use thiserror::Error;

/// Conversion errors from converting a value into a [`BoundedInt32`].
#[derive(Debug, Clone, PartialEq, Eq, Error)]
#[non_exhaustive]
pub enum Error {
    /// A passed value was below the lower bound for the type.
    #[error("Value {0} was below the lower bound {1} for this type.")]
    BelowLowerBound(i32, i32),
    /// A passed value was above the upper bound for the type.
    #[error("Value {0} was above the lower bound {1} for this type.")]
    AboveUpperBound(i32, i32),
    /// Tried to convert a negative value to an unsigned type.
    #[error("Tried to convert a negative value to an unsigned type")]
    Negative,
    /// Tried to parse a value that was not representable as the
    /// underlying type.
    #[error("Value could not be represented as an i32")]
    Unrepresentable,
    /// We encountered some kind of integer overflow when converting a number.
    #[error("Integer overflow")]
    Overflow,
    /// Tried to instantiate an uninhabited type.
    #[error("No value is valid for this type")]
    Uninhabited,
}

/// A 32-bit signed integer with a restricted range.
///
/// This type holds an i32 value such that `LOWER` <= value <= `UPPER`
///
/// # Limitations
///
/// If you try to instantiate this type with LOWER > UPPER, you will
/// get an uninhabitable type.  It would be better if we could check that at
/// compile time, and prevent such types from being named.
//
// [TODO: If you need a Bounded* for some type other than i32, ask nickm:
// he has an implementation kicking around.]
#[derive(Debug, Clone, Copy)]
pub struct BoundedInt32<const LOWER: i32, const UPPER: i32> {
    /// Interior Value
    value: i32,
}

impl<const LOWER: i32, const UPPER: i32> BoundedInt32<LOWER, UPPER> {
    /// Lower bound
    pub const LOWER: i32 = LOWER;
    /// Upper bound
    pub const UPPER: i32 = UPPER;

    /// Private constructor function for this type.
    fn unchecked_new(value: i32) -> Self {
        assert!(LOWER <= UPPER); //The compiler optimises this out, no run-time cost.

        BoundedInt32 { value }
    }

    /// Return the underlying i32 value.
    ///
    /// This value will always be between [`Self::LOWER`] and [`Self::UPPER`],
    /// inclusive.
    pub fn get(&self) -> i32 {
        self.value
    }

    /// If `val` is within range, return a new `BoundedInt32` wrapping
    /// it; otherwise, clamp it to the upper or lower bound as
    /// appropriate.
    pub fn saturating_new(val: i32) -> Self {
        Self::unchecked_new(Self::clamp(val))
    }

    /// If `val` is an acceptable value inside the range for this type,
    /// return a new [`BoundedInt32`].  Otherwise return an error.
    pub fn checked_new(val: i32) -> Result<Self, Error> {
        if val > UPPER {
            Err(Error::AboveUpperBound(val, UPPER))
        } else if val < LOWER {
            Err(Error::BelowLowerBound(val, LOWER))
        } else {
            Ok(BoundedInt32::unchecked_new(val))
        }
    }

    /// This private function clamps an input to the acceptable range.
    fn clamp(val: i32) -> i32 {
        Ord::clamp(val, LOWER, UPPER)
    }

    /// Convert from the underlying type, clamping to the upper or
    /// lower bound if needed.
    ///
    /// # Panics
    ///
    /// This function will panic if UPPER < LOWER.
    pub fn saturating_from(val: i32) -> Self {
        Self::unchecked_new(Self::clamp(val))
    }

    /// Convert from a string, clamping to the upper or lower bound if needed.
    ///
    /// # Limitations
    ///
    /// If the input is a number that cannot be represented as an i32,
    /// then we return an error instead of clamping it.
    pub fn saturating_from_str(s: &str) -> Result<Self, Error> {
        if UPPER < LOWER {
            // The compiler should optimize this block out at compile time.
            return Err(Error::Uninhabited);
        }
        let val: i32 = s.parse().map_err(|_| Error::Unrepresentable)?;
        Ok(Self::saturating_from(val))
    }
}

impl<const L: i32, const U: i32> std::fmt::Display for BoundedInt32<L, U> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.value)
    }
}

impl<const L: i32, const U: i32> From<BoundedInt32<L, U>> for i32 {
    fn from(val: BoundedInt32<L, U>) -> i32 {
        val.value
    }
}

impl<const L: i32, const U: i32> From<BoundedInt32<L, U>> for f64 {
    fn from(val: BoundedInt32<L, U>) -> f64 {
        val.value.into()
    }
}

impl<const L: i32, const H: i32> TryFrom<i32> for BoundedInt32<L, H> {
    type Error = Error;
    fn try_from(val: i32) -> Result<Self, Self::Error> {
        Self::checked_new(val)
    }
}

impl<const L: i32, const H: i32> std::str::FromStr for BoundedInt32<L, H> {
    type Err = Error;
    fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
        Self::checked_new(s.parse().map_err(|_| Error::Unrepresentable)?)
    }
}

impl From<BoundedInt32<0, 1>> for bool {
    fn from(val: BoundedInt32<0, 1>) -> bool {
        val.value == 1
    }
}

impl From<BoundedInt32<0, 255>> for u8 {
    fn from(val: BoundedInt32<0, 255>) -> u8 {
        val.value as u8
    }
}

impl<const L: i32, const H: i32> TryFrom<BoundedInt32<L, H>> for u64 {
    type Error = Error;
    fn try_from(val: BoundedInt32<L, H>) -> Result<Self, Self::Error> {
        if val.value < 0 {
            Err(Error::Negative)
        } else {
            Ok(val.value as u64)
        }
    }
}

impl<const L: i32, const H: i32> TryFrom<BoundedInt32<L, H>> for usize {
    type Error = Error;
    fn try_from(val: BoundedInt32<L, H>) -> Result<Self, Self::Error> {
        if val.value < 0 {
            Err(Error::Negative)
        } else {
            Ok(val.value as usize)
        }
    }
}

/// A percentage value represented as a number.
///
/// This type wraps an underlying numeric type, and ensures that callers
/// are clear whether they want a _fraction_, or a _percentage_.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct Percentage<T: Copy + Into<f64>> {
    /// The underlying percentage value.
    value: T,
}

impl<T: Copy + Into<f64>> Percentage<T> {
    /// Create a new `IntPercentage` from the underlying percentage.
    pub fn new(value: T) -> Self {
        Self { value }
    }

    /// Return this value as a (possibly improper) fraction.
    ///
    /// ```
    /// use tor_units::Percentage;
    /// let pct_200 = Percentage::<u8>::new(200);
    /// let pct_100 = Percentage::<u8>::new(100);
    /// let pct_50 = Percentage::<u8>::new(50);
    ///
    /// assert_eq!(pct_200.as_fraction(), 2.0);
    /// assert_eq!(pct_100.as_fraction(), 1.0);
    /// assert_eq!(pct_50.as_fraction(), 0.5);
    /// // Note: don't actually compare f64 with ==.
    /// ```
    pub fn as_fraction(self) -> f64 {
        self.value.into() / 100.0
    }

    /// Return this value as a percentage.
    ///
    /// ```
    /// use tor_units::Percentage;
    /// let pct_200 = Percentage::<u8>::new(200);
    /// let pct_100 = Percentage::<u8>::new(100);
    /// let pct_50 = Percentage::<u8>::new(50);
    ///
    /// assert_eq!(pct_200.as_percent(), 200);
    /// assert_eq!(pct_100.as_percent(), 100);
    /// assert_eq!(pct_50.as_percent(), 50);
    /// ```
    pub fn as_percent(self) -> T {
        self.value
    }
}

impl<const H: i32, const L: i32> TryFrom<i32> for Percentage<BoundedInt32<H, L>> {
    type Error = Error;
    fn try_from(v: i32) -> Result<Self, Error> {
        Ok(Percentage::new(v.try_into()?))
    }
}

#[derive(
    Add, Copy, Clone, Mul, Div, From, FromStr, Display, Debug, PartialEq, Eq, Ord, PartialOrd,
)]
/// This type represents an integer number of milliseconds.
///
/// The underlying type should implement TryInto<u64>.
pub struct IntegerMilliseconds<T> {
    /// Interior Value. Should Implement TryInto<u64> to be useful.
    value: T,
}

impl<T: TryInto<u64>> IntegerMilliseconds<T> {
    /// Public Constructor
    pub fn new(value: T) -> Self {
        IntegerMilliseconds { value }
    }
}

impl<T: TryInto<u64>> TryFrom<IntegerMilliseconds<T>> for Duration {
    type Error = <T as TryInto<u64>>::Error;
    fn try_from(val: IntegerMilliseconds<T>) -> Result<Self, <T as TryInto<u64>>::Error> {
        Ok(Self::from_millis(val.value.try_into()?))
    }
}

impl<const H: i32, const L: i32> TryFrom<i32> for IntegerMilliseconds<BoundedInt32<H, L>> {
    type Error = Error;
    fn try_from(v: i32) -> Result<Self, Error> {
        Ok(IntegerMilliseconds::new(v.try_into()?))
    }
}

#[derive(
    Add, Copy, Clone, Mul, Div, From, FromStr, Display, Debug, PartialEq, Eq, Ord, PartialOrd,
)]
/// This type represents an integer number of seconds.
///
/// The underlying type should implement TryInto<u64>.
pub struct IntegerSeconds<T> {
    /// Interior Value. Should Implement TryInto<u64> to be useful.
    value: T,
}

impl<T: TryInto<u64>> IntegerSeconds<T> {
    /// Public Constructor
    pub fn new(value: T) -> Self {
        IntegerSeconds { value }
    }
}

impl<T: TryInto<u64>> TryFrom<IntegerSeconds<T>> for Duration {
    type Error = <T as TryInto<u64>>::Error;
    fn try_from(val: IntegerSeconds<T>) -> Result<Self, <T as TryInto<u64>>::Error> {
        Ok(Self::from_secs(val.value.try_into()?))
    }
}

impl<const H: i32, const L: i32> TryFrom<i32> for IntegerSeconds<BoundedInt32<H, L>> {
    type Error = Error;
    fn try_from(v: i32) -> Result<Self, Error> {
        Ok(IntegerSeconds::new(v.try_into()?))
    }
}

#[derive(Copy, Clone, From, FromStr, Display, Debug, PartialEq, Eq, Ord, PartialOrd)]
/// This type represents an integer number of days.
///
/// The underlying type should implement TryInto<u64>.
pub struct IntegerDays<T> {
    /// Interior Value. Should Implement TryInto<u64> to be useful.
    value: T,
}

impl<T> IntegerDays<T> {
    /// Public Constructor
    pub fn new(value: T) -> Self {
        IntegerDays { value }
    }
}

impl<T: TryInto<u64>> TryFrom<IntegerDays<T>> for Duration {
    type Error = Error;
    fn try_from(val: IntegerDays<T>) -> Result<Self, Error> {
        /// Number of seconds in a single day.
        const SECONDS_PER_DAY: u64 = 86400;
        let days: u64 = val.value.try_into().map_err(|_| Error::Overflow)?;
        let seconds = days.checked_mul(SECONDS_PER_DAY).ok_or(Error::Overflow)?;
        Ok(Self::from_secs(seconds))
    }
}

impl<const H: i32, const L: i32> TryFrom<i32> for IntegerDays<BoundedInt32<H, L>> {
    type Error = Error;
    fn try_from(v: i32) -> Result<Self, Error> {
        Ok(IntegerDays::new(v.try_into()?))
    }
}

/// A SendMe Version
///
/// DOCDOC: Explain why this needs to have its own type, or remove it.
#[derive(Clone, Copy, From, FromStr, Display, Debug, PartialEq, Eq, Ord, PartialOrd)]
pub struct SendMeVersion(u8);

impl SendMeVersion {
    /// Public Constructor
    pub fn new(value: u8) -> Self {
        SendMeVersion(value)
    }

    /// Helper
    pub fn get(&self) -> u8 {
        self.0
    }
}

impl TryFrom<i32> for SendMeVersion {
    type Error = Error;
    fn try_from(v: i32) -> Result<Self, Error> {
        let val_u8 = BoundedInt32::<0, 255>::checked_new(v)?;
        Ok(SendMeVersion::new(val_u8.get() as u8))
    }
}

#[cfg(test)]
mod tests {
    #![allow(clippy::unwrap_used)]
    use float_cmp::assert_approx_eq;

    use super::*;
    use std::convert::TryInto;

    type TestFoo = BoundedInt32<1, 5>;
    type TestBar = BoundedInt32<-45, 17>;

    //make_parameter_type! {TestFoo(3,)}
    #[test]
    fn entire_range_parsed() {
        let x: TestFoo = "1".parse().unwrap();
        assert!(x.get() == 1);
        let x: TestFoo = "2".parse().unwrap();
        assert!(x.get() == 2);
        let x: TestFoo = "3".parse().unwrap();
        assert!(x.get() == 3);
        let x: TestFoo = "4".parse().unwrap();
        assert!(x.get() == 4);
        let x: TestFoo = "5".parse().unwrap();
        assert!(x.get() == 5);
    }

    #[test]
    fn saturating() {
        let x: TestFoo = TestFoo::saturating_new(1000);
        let x_val: i32 = x.into();
        assert!(x_val == TestFoo::UPPER);
        let x: TestFoo = TestFoo::saturating_new(0);
        let x_val: i32 = x.into();
        assert!(x_val == TestFoo::LOWER);
    }
    #[test]
    fn saturating_string() {
        let x: TestFoo = TestFoo::saturating_from_str("1000").unwrap();
        let x_val: i32 = x.into();
        assert!(x_val == TestFoo::UPPER);
        let x: TestFoo = TestFoo::saturating_from_str("0").unwrap();
        let x_val: i32 = x.into();
        assert!(x_val == TestFoo::LOWER);
    }

    #[test]
    #[should_panic]
    fn uninhabited_saturating_new() {
        // This value should be uncreatable.
        let _: BoundedInt32<10, 5> = BoundedInt32::saturating_new(7);
    }

    #[test]
    fn uninhabited_from_string() {
        let v: Result<BoundedInt32<10, 5>, Error> = BoundedInt32::saturating_from_str("7");
        assert!(matches!(v, Err(Error::Uninhabited)));
    }

    #[test]
    fn errors_correct() {
        let x: Result<TestBar, Error> = "1000".parse();
        assert!(x.unwrap_err() == Error::AboveUpperBound(1000, TestBar::UPPER));
        let x: Result<TestBar, Error> = "-1000".parse();
        assert!(x.unwrap_err() == Error::BelowLowerBound(-1000, TestBar::LOWER));
        let x: Result<TestBar, Error> = "xyz".parse();
        assert!(x.unwrap_err() == Error::Unrepresentable);
    }

    #[test]
    fn display() {
        let v = BoundedInt32::<99, 1000>::checked_new(345).unwrap();
        assert_eq!(v.to_string(), "345".to_string());
    }

    #[test]
    #[should_panic]
    fn checked_too_high() {
        let _: TestBar = "1000".parse().unwrap();
    }

    #[test]
    #[should_panic]
    fn checked_too_low() {
        let _: TestBar = "-46".parse().unwrap();
    }

    #[test]
    fn bounded_to_u64() {
        let b: BoundedInt32<-100, 100> = BoundedInt32::checked_new(77).unwrap();
        let u: u64 = b.try_into().unwrap();
        assert_eq!(u, 77);

        let b: BoundedInt32<-100, 100> = BoundedInt32::checked_new(-77).unwrap();
        let u: Result<u64, Error> = b.try_into();
        assert!(u.is_err());
    }

    #[test]
    fn bounded_to_f64() {
        let x: BoundedInt32<-100, 100> = BoundedInt32::checked_new(77).unwrap();
        let f: f64 = x.into();
        assert_approx_eq!(f64, f, 77.0);
    }

    #[test]
    fn bounded_from_i32() {
        let mut x: Result<BoundedInt32<-100, 100>, Error>;

        x = (50).try_into();
        let y: i32 = x.unwrap().into();
        assert_eq!(y, 50);

        x = (1000).try_into();
        assert!(x.is_err());
    }

    #[test]
    fn into_bool() {
        let zero: BoundedInt32<0, 1> = BoundedInt32::saturating_from(0);
        let one: BoundedInt32<0, 1> = BoundedInt32::saturating_from(1);

        let f: bool = zero.into();
        let t: bool = one.into();
        assert!(!f);
        assert!(t);
    }

    #[test]
    fn into_u8() {
        let zero: BoundedInt32<0, 255> = BoundedInt32::saturating_from(0);
        let one: BoundedInt32<0, 255> = BoundedInt32::saturating_from(1);
        let ninety: BoundedInt32<0, 255> = BoundedInt32::saturating_from(90);
        let max: BoundedInt32<0, 255> = BoundedInt32::saturating_from(1000);

        let a: u8 = zero.into();
        let b: u8 = one.into();
        let c: u8 = ninety.into();
        let d: u8 = max.into();

        assert_eq!(a, 0);
        assert_eq!(b, 1);
        assert_eq!(c, 90);
        assert_eq!(d, 255);
    }

    #[test]
    fn percents() {
        type Pct = Percentage<u8>;
        let p = Pct::new(100);
        assert_eq!(p.as_percent(), 100);
        assert_approx_eq!(f64, p.as_fraction(), 1.0);

        let p = Pct::new(0);
        assert_eq!(p.as_percent(), 0);
        assert_approx_eq!(f64, p.as_fraction(), 0.0);

        let p = Pct::new(25);
        assert_eq!(p.as_percent(), 25);
        assert_approx_eq!(f64, p.as_fraction(), 0.25);
    }

    #[test]
    fn milliseconds() {
        type Msec = IntegerMilliseconds<i32>;

        let ms = Msec::new(500);
        let d: Result<Duration, _> = ms.try_into();
        assert_eq!(d.unwrap(), Duration::from_millis(500));

        let ms = Msec::new(-100);
        let d: Result<Duration, _> = ms.try_into();
        assert!(d.is_err());
    }

    #[test]
    fn seconds() {
        type Sec = IntegerSeconds<i32>;

        let ms = Sec::new(500);
        let d: Result<Duration, _> = ms.try_into();
        assert_eq!(d.unwrap(), Duration::from_secs(500));

        let ms = Sec::new(-100);
        let d: Result<Duration, _> = ms.try_into();
        assert!(d.is_err());
    }

    #[test]
    fn days() {
        type Days = IntegerDays<i32>;

        let t = Days::new(500);
        let d: Duration = t.try_into().unwrap();
        assert_eq!(d, Duration::from_secs(500 * 86400));

        let t = Days::new(-100);
        let d: Result<Duration, _> = t.try_into();
        assert_eq!(d, Err(Error::Overflow));

        let t = IntegerDays::<u64>::new(u64::MAX);
        let d: Result<Duration, _> = t.try_into();
        assert_eq!(d, Err(Error::Overflow));
    }

    #[test]
    fn sendme() {
        let smv = SendMeVersion::new(5);
        assert_eq!(smv.get(), 5);
    }
}