1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! Maps of keys to values that can be used with the `Arena`.

use std::hash::{Hash, Hasher};
use std::fmt::{self, Debug};
use fxhash::FxHasher;

use cell::CopyCell;
use Arena;
use bloom::bloom;

#[derive(Clone, Copy)]
struct MapNode<'arena, K, V>
where
    K: 'arena,
    V: 'arena + Copy,
{
    pub key: K,
    pub hash: u64,
    pub value: CopyCell<V>,
    pub left: CopyCell<Option<&'arena MapNode<'arena, K, V>>>,
    pub right: CopyCell<Option<&'arena MapNode<'arena, K, V>>>,
}

impl<'arena, K: Debug, V: Debug + Copy> Debug for MapNode<'arena, K, V> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("MapNode")
            .field(&self.key)
            .field(&self.value.get())
            .finish()
    }
}

impl<'arena, K: Eq, V: Eq + Copy> PartialEq for MapNode<'arena, K, V> {
    #[inline]
    fn eq(&self, other: &MapNode<'arena, K, V>) -> bool {
        self.hash  == other.hash &&
        self.key   == other.key  &&
        self.value == other.value
    }
}
impl<'arena, K: Eq, V: Eq + Copy> Eq for MapNode<'arena, K, V> {}

impl<'arena, K, V: Copy> MapNode<'arena, K, V> {
    #[inline]
    pub fn new(key: K, hash: u64, value: V) -> Self {
        MapNode {
            key,
            hash,
            value: CopyCell::new(value),
            left: CopyCell::new(None),
            right: CopyCell::new(None),
        }
    }
}

/// A map of keys `K` to values `V`. The map is built as a pseudo-random
/// binary tree with hashes of keys used for ordering.
pub struct Map<'arena, K: 'arena, V: 'arena + Copy> {
    root: CopyCell<Option<&'arena MapNode<'arena, K, V>>>,
}

impl<'arena, K, V> Map<'arena, K, V>
where
    K: Eq + Hash + Copy,
    V: Copy,
{
    /// Create a new, empty `Map`.
    #[inline]
    pub fn new() -> Self {
        Map {
            root: CopyCell::new(None),
        }
    }

    #[inline]
    fn hash_key(key: &K) -> u64 {
        let mut hasher = FxHasher::default();

        key.hash(&mut hasher);

        hasher.finish()
    }

    #[inline]
    fn find_slot(&self, key: K, hash: u64) -> &CopyCell<Option<&'arena MapNode<'arena, K, V>>> {
        let mut node = &self.root;

        loop {
            match node.get() {
                None         => return node,
                Some(parent) => {
                    if hash == parent.hash && key == parent.key {
                        return node;
                    } else if hash < parent.hash {
                        node = &parent.left;
                    } else {
                        node = &parent.right;
                    }
                }
            }
        }
    }

    /// Inserts a key-value pair into the map.
    #[inline]
    pub fn insert(&self, arena: &'arena Arena, key: K, value: V) {
        let hash = Self::hash_key(&key);
        let node = self.find_slot(key, hash);

        match node.get() {
            Some(node) => node.value.set(value),
            None => {
                let new = arena.alloc(MapNode::new(key, hash, value));
                node.set(Some(new));
            }
        }
    }

    /// Returns the value corresponding to the key.
    #[inline]
    pub fn get(&self, key: K) -> Option<V> {
        let hash = Self::hash_key(&key);

        self.find_slot(key, hash).get().map(|node| node.value.get())
    }

    /// Returns true if the map contains a value for the specified key.
    #[inline]
    pub fn contains_key(&self, key: K) -> bool {
        let hash = Self::hash_key(&key);

        self.find_slot(key, hash).get().is_some()
    }

    /// Returns true if the map contains no elements.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.root.get().is_none()
    }

    /// Clears the map.
    #[inline]
    pub fn clear(&self) {
        self.root.set(None);
    }
}

/// A variant of the `Map` that includes a bloom filter using the
/// `bloom` function for keys that can be represented as byte slices.
///
/// This is ideal for small maps for which querying for absent keys is
/// a common behavior. In this case it will very likely outperform a
/// `HashMap`, even one with a fast hashing algorithm.
pub struct BloomMap<'arena, K: 'arena, V: 'arena + Copy> {
    filter: CopyCell<u64>,
    inner: Map<'arena, K, V>,
}

impl<'arena, K, V> BloomMap<'arena, K, V>
where
    K: Eq + Hash + Copy + AsRef<[u8]>,
    V: Copy,
{
    /// Create a new, empty `BloomMap`.
    #[inline]
    pub fn new() -> Self {
        BloomMap {
            filter: CopyCell::new(0),
            inner: Map::new(),
        }
    }

    /// Inserts a key-value pair into the map.
    #[inline]
    pub fn insert(&self, arena: &'arena Arena, key: K, value: V) {
        self.filter.set(self.filter.get() | bloom(key.as_ref()));
        self.inner.insert(arena, key, value);
    }

    /// Returns the value corresponding to the key.
    #[inline]
    pub fn get(&self, key: K) -> Option<V> {
        let b = bloom(key.as_ref());

        if self.filter.get() & b == b {
            self.inner.get(key)
        } else {
            None
        }
    }

    /// Returns true if the map contains a value for the specified key.
    #[inline]
    pub fn contains_key(&self, key: K) -> bool {
        let b = bloom(key.as_ref());

        self.filter.get() & b == b && self.inner.contains_key(key)
    }

    /// Returns true if the map contains no elements.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    /// Clears the map.
    #[inline]
    pub fn clear(&self) {
        self.filter.set(0);
        self.inner.clear();
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn map() {
        let arena = Arena::new();
        let map = Map::new();

        map.insert(&arena, "foo", 10u64);
        map.insert(&arena, "bar", 20);
        map.insert(&arena, "doge", 30);

        assert_eq!(map.contains_key("foo"), true);
        assert_eq!(map.contains_key("bar"), true);
        assert_eq!(map.contains_key("doge"), true);
        assert_eq!(map.contains_key("moon"), false);

        assert_eq!(map.get("foo"), Some(10));
        assert_eq!(map.get("bar"), Some(20));
        assert_eq!(map.get("doge"), Some(30));
        assert_eq!(map.get("moon"), None);
    }

    #[test]
    fn bloom_map() {
        let arena = Arena::new();
        let map = BloomMap::new();

        map.insert(&arena, "foo", 10u64);
        map.insert(&arena, "bar", 20);
        map.insert(&arena, "doge", 30);

        assert_eq!(map.contains_key("foo"), true);
        assert_eq!(map.contains_key("bar"), true);
        assert_eq!(map.contains_key("doge"), true);
        assert_eq!(map.contains_key("moon"), false);

        assert_eq!(map.get("foo"), Some(10));
        assert_eq!(map.get("bar"), Some(20));
        assert_eq!(map.get("doge"), Some(30));
        assert_eq!(map.get("moon"), None);
    }
}