1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
//! Utilities for tracking time.
//!
//! This module provides a number of types for executing code after a set period
//! of time.
//!
//! * `Sleep` is a future that does no work and completes at a specific `Instant`
//!   in time.
//!
//! * `Interval` is a stream yielding a value at a fixed period. It is
//!   initialized with a `Duration` and repeatedly yields each time the duration
//!   elapses.
//!
//! * `Timeout`: Wraps a future or stream, setting an upper bound to the amount
//!   of time it is allowed to execute. If the future or stream does not
//!   complete in time, then it is canceled and an error is returned.
//!
//! These types are sufficient for handling a large number of scenarios
//! involving time.
//!
//! These types must be used from within the context of the `Runtime`.
//!
//! # Examples
//!
//! Wait 100ms and print "100 ms have elapsed"
//!
//! ```
//! use tokio::time::sleep;
//!
//! use std::time::Duration;
//!
//!
//! #[tokio::main]
//! async fn main() {
//!     sleep(Duration::from_millis(100)).await;
//!     println!("100 ms have elapsed");
//! }
//! ```
//!
//! Require that an operation takes no more than 300ms. Note that this uses the
//! `timeout` function on the `FutureExt` trait. This trait is included in the
//! prelude.
//!
//! ```
//! use tokio::time::{timeout, Duration};
//!
//! async fn long_future() {
//!     // do work here
//! }
//!
//! # async fn dox() {
//! let res = timeout(Duration::from_secs(1), long_future()).await;
//!
//! if res.is_err() {
//!     println!("operation timed out");
//! }
//! # }
//! ```
//!
//! A simple example using [`interval`] to execute a task every two seconds.
//!
//! The difference between [`interval`] and [`sleep`] is that an
//! [`interval`] measures the time since the last tick, which means that
//! `.tick().await` may wait for a shorter time than the duration specified
//! for the interval if some time has passed between calls to `.tick().await`.
//!
//! If the tick in the example below was replaced with [`sleep`], the task
//! would only be executed once every three seconds, and not every two
//! seconds.
//!
//! ```
//! use tokio::time;
//!
//! async fn task_that_takes_a_second() {
//!     println!("hello");
//!     time::sleep(time::Duration::from_secs(1)).await
//! }
//!
//! #[tokio::main]
//! async fn main() {
//!     let mut interval = time::interval(time::Duration::from_secs(2));
//!     for _i in 0..5 {
//!         interval.tick().await;
//!         task_that_takes_a_second().await;
//!     }
//! }
//! ```
//!
//! [`sleep`]: crate::time::sleep()
//! [`interval`]: crate::time::interval()

mod clock;
pub(crate) use self::clock::Clock;
#[cfg(feature = "test-util")]
pub use clock::{advance, pause, resume};

mod sleep;
pub use sleep::{sleep, sleep_until, Sleep};

pub(crate) mod driver;

pub mod error;

mod instant;
pub use self::instant::Instant;

mod interval;
pub use interval::{interval, interval_at, Interval};

mod timeout;
#[doc(inline)]
pub use timeout::{timeout, timeout_at, Timeout};

mod wheel;

#[cfg(test)]
#[cfg(not(loom))]
mod tests;

// Re-export for convenience
#[doc(no_inline)]
pub use std::time::Duration;

// ===== Internal utils =====

enum Round {
    Up,
    Down,
}

/// Convert a `Duration` to milliseconds, rounding up and saturating at
/// `u64::MAX`.
///
/// The saturating is fine because `u64::MAX` milliseconds are still many
/// million years.
#[inline]
fn ms(duration: Duration, round: Round) -> u64 {
    const NANOS_PER_MILLI: u32 = 1_000_000;
    const MILLIS_PER_SEC: u64 = 1_000;

    // Round up.
    let millis = match round {
        Round::Up => (duration.subsec_nanos() + NANOS_PER_MILLI - 1) / NANOS_PER_MILLI,
        Round::Down => duration.subsec_millis(),
    };

    duration
        .as_secs()
        .saturating_mul(MILLIS_PER_SEC)
        .saturating_add(u64::from(millis))
}